1.6 SI Units International System of units (metric system) French le Système International d'Unités

TABLE 1.1	SI Base Units	
Quantity	Unit	Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	S
Temperature	kelvin	K
Amount of substan	ce mole	mol
Electric current	ampere	A
Luminous intensity	candela	cd

TABLE	1.2	Selected SI Prefixes
Prefix	Multip	e Symbol
mega	10^{6}	M
kilo	10^{3}	k
deci	10^{-1}	d
centi	10^{-2}	c
milli	10^{-3}	m
micro	10^{-6}	μ^*
nano	10^{-9}	n
pico	10^{-12}	p p

^{*}Greek letter mu, pronounced "mew."

In this chapter, we will discuss four base quantities: length, mass, time, and temperature.

(Q) The SI unit of length is:

- A. millimeter
- B. meter
- C. yard
- D. centimeter
- E. foot

Examples:

- $2.54 \text{ cm} = 2.54 \times 10^{-2} \text{ m}$
- $1 \text{ mL} = 10^{-3} \text{ L}$
- 1 km = 1000 m
- $1 \text{ ng} = 10^{-9} \text{ g}$
- $1,130,000 \text{ m} = 1.13 \times 10^6 \text{ m} = 1.13 \text{ Mm}$

TABLE 1.5	SI Prefixes—	-Their	Meanings	and	Values ^a
-----------	--------------	--------	----------	-----	---------------------

Prefix	Meaning	Symbol	Prefix Value ^b (numerical)	Prefix Value ^b (power of ten)
exa		E		10^{18}
peta		P		10^{15}
tera		T		10^{12}
giga	billions of	G	1000000000	10 ⁹
mega	millions of	M	1000000	10^{6}
kilo	thousands of	k	1000	10^{3}
hecto		h		10^{2}
deka		da		10^{1}
deci	tenths of	d	0.1	10^{-1}
centi	hundredths of	C	0.01	10^{-2}
milli	thousandths of	m	0.001	10^{-3}
micro	millionths of	μ	0.000001	10^{-6}
nano	billionths of	n	0.000000001	10^{-9}
pico	trillionths of	Р	0.000000000001	10^{-12}
femto		f		10^{-15}
atto		a		10^{-18}

^aPrefixes in red type are used most often.

^bNumbers in these columns can be interchanged with the corresponding prefix.

Some Non-SI Metric Units Commonly Used in Chemistry

Measurement	Unit	Abbreviation	Value in SI Units
Length	angstrom	Å	$1 \text{Å} = 0.1 \text{nm} = 10^{-10} \text{m}$
Mass	atomic mass unit	u (amu)	$1 u = 1.66054 \times 10^{-27} kg$ (rounded to six digits)
	metric ton	t	$1 t = 10^3 kg$
Time	minute	min.	1 min. = 60 s
	hour	h	1 h = 60 min. = 3600 s
Temperature	degree Celsius	°C	$T_{\rm K} = t_{\rm C} + 273.15$
Volume	liter	L	$1 L = 1000 cm^3$

TABLE 1.4 Some Useful Conversions

TABLE 1.3

Measurement	English Unit	English/SI Equality ^a
Length	inch	1 in. = 2.54 cm
	yard	1 yd = 0.9144 m
	mile	1 mi = 1.609 km
Mass	pound	1 lb = 453.6 g
	ounce (mass)	1 oz = 28.35 g
Volume	gallon	1 gal = 3.785 L
	quart	1 qt = 946.4 mL

Laboratory Measurements

Four common

- 1. Length
- 2. Volume
- 3. Mass
- 4. Temperature

Laboratory Measurements

1. Length

- SI Unit is meter (m)
- Meter too large for most laboratory measurements
- Commonly use
 - Centimeter (cm)

$$1 \text{ cm} = 10^{-2} \text{ m} = 0.01 \text{ m}$$

Millimeter (mm)

$$1 \text{ mm} = 10^{-3} \text{ m} = 0.001 \text{ m}$$

2. Volume

- Dimensions of (length)³
- SI unit for Volume = m³
- Most laboratory
 measurements use / in
 liters (L)

 $1 L = 1 dm^3$

Chemistry glassware marked in L or mL

1 L = 1000 mL

What is a mL?

 $1 \text{ mL} = 1 \text{ cm}^3$

3. Mass

- SI unit is kilogram (kg)
 - Frequently use grams (g) in laboratory as more realistic size
- 1 kg = 1000 g 1 g = 0.001 kg = $\frac{1000}{1000}$ g
- Mass is measured by comparing weight of sample with weights of known standard masses
- Instrument used = balance

Winters/Photo Researchers

4. Temperature

- Measured with thermometer
- Three common scales

A. Fahrenheit scale

- Common in US
- Water freezes at 32 °F and boils at 212 °F
- 180 degree units between melting and boiling points of water

4. Temperature

B. Celsius scale

- Most common for use in science
- Water freezes at 0 °C
- Water boils at 100 °C
- 100 degree units between melting and boiling points of water

4. Temperature

C. Kelvin scale

- SI unit of temperature is kelvin (K)
 - Note: No degree symbol in front of K
- Water freezes at 273.15 K and boils at 373.15 K
 - 100 degree units between melting and boiling points
- Only difference between Kelvin and Celsius scale is zero point

Absolute Zero

- Zero point on Kelvin scale
- Corresponds to nature's lowest possible temperature

Temperature Conversions

How to convert between F and C?

$${}^{0}F = \frac{9}{5} \times {}^{0}C + 32$$

$$32 \, {}^{0}F = 0 \, {}^{0}C$$

 $212 \, {}^{0}F = 100 \, {}^{0}C$

Temperature Conversions

- Common laboratory thermometers are marked in Celsius scale
- How to convert to Kelvin scale

$$K = {}^{0}C + 273.15$$

$$273.15 \text{ K} = 0 \, {}^{\circ}\text{C}$$

 $373.15 \text{ K} = 100 \, {}^{\circ}\text{C}$

 Amounts to adding 273.15 to Celsius temperature

Example: What is the Kelvin temperature of a solution at 25 °C?

$$T_{\rm K} = (25 \, ^{\circ}{\rm C} + 273.15 \, ^{\circ}{\rm C}) \frac{1 \, ^{\circ}{\rm C}}{1 \, ^{\circ}{\rm C}} = 298 \, {\rm K}$$

1. Convert 121 °F to the Celsius scale.

$${}^{0}F = \frac{9}{5} \times {}^{0}C + 32$$

$$t_{\rm C} = (t_{\rm F} - 32 \, {\rm ^{\circ}F}) \left(\frac{35 \, {\rm ^{\circ}C}}{9 \, {\rm ^{\circ}F}} \right)^{\frac{1}{2}}$$

$$t_C = (121 \,{}^oF - 32 \,{}^oF) \left(\frac{5 \,{}^oC}{9 \,{}^oF}\right) = 49 \,{}^oC$$

2. Convert 121 °F to the Kelvin scale.

We already have in °C so...

$$T_K = (t_C + 273.15 \,^{\circ}C) \frac{1 \, K}{1 \,^{\circ}C} = (49 + 273.15 \,^{\circ}C) \frac{1 \, K}{1 \,^{\circ}C}$$

$$T_{\rm K} = 332 \, {\rm K}$$

3. Convert 77 K to the Celsius scale.

$$T_{\rm K} = (t_{\rm C} + 273.15 \, {\rm ^{\circ}C}) \frac{1 \, {\rm ^{K}}}{1 \, {\rm ^{\circ}C}}$$
 $t_{\rm C} = (T_{\rm K} - 273.15 \, {\rm ^{K}}) \frac{1 \, {\rm ^{\circ}C}}{1 \, {\rm ^{K}}}$ $t_{\rm C} = (77 \, {\rm ^{K}} - 273.15 \, {\rm ^{K}}) \frac{1 \, {\rm ^{\circ}C}}{1 \, {\rm ^{K}}} = -196 \, {\rm ^{\circ}C}$

4. Convert 77 K to the Fahrenheit scale.

We already have in °C so

$$t_{\rm F} = \frac{29 \, {\rm °F}^{\,0}}{5 \, {\rm °C}^{\,0}} (-196 \, {\rm °C}) + 32 \, {\rm °F} = -321 \, {\rm °F}$$

The melting point of UF_6 is 64.53 °C. What is the melting point of uranium UF_6 on the Fahrenheit scale?

- A. 67.85 °F
- B. 96.53 °F
- C. 116.2 °F
- D. 337.5 °F
- E. 148.2 °F

$$t_{F} = \frac{29 \text{ °F}}{5 \text{ °C}} + 32 \text{ °F}$$

$$t_{\rm F} = \frac{29 \, {\rm °F}^{\,0}}{5 \, {\rm °C}^{\,0}} 64.53 \, {\rm °C} + 32 \, {\rm °F}$$

SI Units

 All physical quantities will have units <u>derived</u> from these seven SI base units

```
e.g., Area
```

- Derived from SI units based on definition of area
- length \times width = area
- meter \times meter = area $m \times m = m^2$
- SI unit for area = square meters = m^2

Note: Units undergo same kinds of mathematical operations that numbers do

TABLE 1.3	Derived Units	
Quantity	Definition of Quantity	SI Unit
Area	Length squared	m^2
Volume	Length cubed	m^3
Density	Mass per unit volume	kg/m ³
Speed	Distance traveled per unit time	m/s
Acceleration	Speed changed per unit time	m/s^2
Force	Mass times acceleration of object	$kg \cdot m/s^2$ (= newton, N)
Pressure	Force per unit area	$kg/(m \cdot s^2)$ (= pascal, Pa)
Energy	Force times distance traveled	$kg \cdot m^2/s^2$ (= joule, J)

What is the SI derived unit for velocity?

Velocity (
$$\nu$$
) = $\frac{\text{distance}}{\text{time}}$
Velocity units = $\frac{\text{meters}}{\text{seconds}} = \frac{\text{m}}{\text{s}}$

What is the SI derived unit for volume of a cube?

```
Volume (V) = length \times width \times height
```

 $V = meter \times meter \times meter$

$$V = m^3$$

What is the SI derived unit for acceleration (hint: acceleration = distance/time²)?

- A. mm/min
- B. yd/hr²
- C. m/s^2
- D. m/s
- E. ft³

Volume – SI derived unit for volume is cubic meter (m³)

Volume: 1000 cm³; 1000 mL; 1 dm³; 1 L

Volume: 1 cm³; 1 mL

$$1 \text{ cm}^3 = (1 \text{ x } 10^{-2} \text{ m})^3 = 1 \text{ x } 10^{-6} \text{ m}^3$$

$$1 \text{ dm}^3 = (1 \text{ x } 10^{-1} \text{ m})^3 = 1 \text{ x } 10^{-3} \text{ m}^3$$

$$1 L = 1000 mL = 1000 cm^3 = 1 dm^3$$

 $1 \text{ mL} = 1 \text{ cm}^3$

Dimensional Analysis Method of Solving Problems

- Determine which unit conversion factor(s) are needed
- 2. Carry units through calculation
- 3. If all units cancel except for the **desired unit(s)**, then the problem was solved correctly.

given quantity x conversion factor = desired quantity

given unit x
$$\frac{\text{desired unit}}{\text{given unit}} = \text{desired unit}$$

A person's average daily intake of glucose (a form of sugar) is 0.0833 pound (lb). What is this mass in milligrams (mg)? (1 lb = 453.6 g.)

pounds ----- grams ------ milligrams

$$\frac{453.6 \text{ g}}{1 \text{ lb}}$$
 and $\frac{1 \text{ mg}}{1 \times 10^{-3} \text{ g}}$

? mg = 0.0833
$$\text{Me} \times \frac{453.6 \text{ g/}}{1 \text{ Me}} \times \frac{1 \text{ mg}}{1 \times 10^{-3} \text{ g/}} = 3.78 \times 10^4 \text{ mg}$$

Q) A liquid helium storage tank has a volume of 275 L. What is the volume in m³?

Q) The density of liquid nitrogen at its boiling point (-196°C or 77 K) is 0.808 g/cm³. Convert the density to units of kg/m³.

$$\frac{1 \text{ kg}}{1000 \text{ g}}$$
 and $\frac{1 \text{ cm}^3}{1 \times 10^{-6} \text{ m}^3}$

?
$$kg/m^3 = \frac{0.808 \text{ g/}}{1 \text{ cm}^3} \times \frac{1 \text{ kg}}{1000 \text{ g/}} \times \frac{1 \text{ cm}^3}{1 \times 10^{-6} \text{ m}^3} = 808 \text{ kg/m}^3$$

Example: How to convert a person's height from 68.0 in to cm? if 2.54 cm = 1 in.

Example: Convert 0.097 m to mm.

Example: Convert 3.5 m³ to cm³.

Q) Convert speed of light from 3.00×10^8 m/s to mi/hr (1 mi = 1.609 km)

The Toyota Camry hybrid electric car has a gas mileage rating of 56 miles per gallon. What is this rating expressed in units of kilometers per liter?

$$1 \text{ gal} = 3.784 \text{ L}$$
 $1 \text{ mile} = 1.609 \text{ km}$

A.
$$1.3 \times 10^2 \text{ km L}^{-1}$$

C.
$$15 \text{ km L}^{-1}$$

D.
$$3.4 \times 10^2 \text{ km L}^{-1}$$

$$56\frac{\text{mi}}{\text{gal}} \times \frac{1\,\text{gal}}{3.784\text{L}} \times \frac{1.609\text{km}}{1\,\text{mi}}$$

The volume of a basketball is 433.5 in^3 . Convert this to mm³. (1 in. = 2.54 cm)

- A. $1.101 \times 10^{-2} \text{ mm}^3$
- B. $7.104 \times 10^6 \text{ mm}^3$
- C. $7.104 \times 10^4 \text{ mm}^3$
- D. $1.101 \times 10^4 \text{ mm}^3$
- E. $1.101 \times 10^6 \text{ mm}^3$

Density

Ratio of object's mass to its volume

density =
$$\frac{\text{mass}}{\text{volume}}$$
 $d = \frac{m}{V}$

- Units (depends on what units we use for mass and volume.
 - -g/mL or g/cm³
 - -Org/L or kg/L

 A student weighs a piece of gold that has a volume of 11.02 cm³ of gold. She finds the mass to be 212 g. What is the density of gold?

$$d=\frac{m}{V}$$

$$d = \frac{212 \text{ g}}{11.02 \text{ cm}^3} = 19.3 \text{ g/cm}^3$$

Another student has a piece of gold with a volume of 1.00 cm³. What does it weigh? **19.3** g What if it were 2.00 cm³ in volume? **38.6** g

30

(Q) If the density of an object is 2.87×10^{-4} lbs/cubic inch, what is its density in g/mL? (1 lb = 454 g, 1 inch = 2.54 cm)