1.6 SI Units

International System of units (metric system)
French le Système International d'Unités

TABLE 1.1	SI Base Units	
Quantity	Unit	Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	s
Temperature	kelvin	K
Amount of substance	mole	mol
Electric current	ampere	A
Luminous intensity	candela	cd

TABLE	1.2	Selected SI Prefixes	
Prefix	Multiple	Symbol	
mega	10^{6}	M	
kilo	10^{3}	k	
deci	10^{-1}	d	
centi	10^{-2}	c	
milli	10^{-3}	m	
micro	10^{-6}	μ^{*}	
nano	10^{-9}	n	
pico	10^{-12}	p	

[^0]In this chapter, we will discuss four base quantities: length, mass, time, and temperature.

(Q) The SI unit of length is:

A. millimeter

B. meter
C. yard
D. centimeter
E. foot

Examples:

$$
\begin{aligned}
& 2.54 \mathrm{~cm}=2.54 \times 10^{-2} \mathrm{~m} \\
& 1 \mathrm{~mL}=10^{-3} \mathrm{~L} \\
& 1 \mathrm{~km}=1000 \mathrm{~m} \\
& 1 \mathrm{ng}=10^{-9} \mathrm{~g} \\
& 1,130,000 \mathrm{~m}=1.13 \times 10^{6} \mathrm{~m}=1.13 \mathrm{Mm}
\end{aligned}
$$

TABLE 1.5 Prefix	SI Prefixes-Their Meanings and Values ${ }^{\text {a }}$			
	Meaning	Symbol	Prefix Value ${ }^{\text {b }}$ (numerical)	Prefix Value ${ }^{\text {b }}$ (power of ten)
exa		E		10^{18}
peta		P		10^{15}
tera		T		10^{12}
giga	billions of	G	1000000000	10^{9}
mega	millions of	M	1000000	10^{6}
kilo	thousands of	k	1000	10^{3}
hecto		h		10^{2}
deka		da		10^{1}
deci	tenths of	d	0.1	10^{-1}
centi	hundredths of	c	0.01	10^{-2}
milli	thousandths of	m	0.001	10^{-3}
micro	millionths of	μ	0.000001	10^{-6}
nano	billionths of	n	0.000000001	10^{-9}
pico	trillionths of	p	0.000000000001	10^{-12}
femto		f		10^{-15}
atto		a		10^{-18}

[^1]TABLE 1.3 Some Non-SI Metric Units Commonly Used in Chemistry

Measurement	Unit	Abbreviation	Value in SI Units
Length	angstrom	A	$1 \AA=0.1 \mathrm{~nm}=10^{-10} \mathrm{~m}$
Mass	atomic mass unit	u (amu)	$\begin{aligned} & 1 \mathrm{u}=1.66054 \times 10^{-27} \mathrm{~kg} \\ & \text { (rounded to six digits) } \end{aligned}$
	metric ton	t	$1 \mathrm{t}=10^{3} \mathrm{~kg}$
Time	minute	min.	$1 \mathrm{~min} .=60 \mathrm{~s}$
	hour	h	$1 \mathrm{~h}=60 \mathrm{~min} .=3600 \mathrm{~s}$
Temperature	degree Celsius	${ }^{\circ} \mathrm{C}$	$T_{\mathrm{K}}=t^{\text {c }} \mathrm{C}+273.15$
Volume	liter	L	$1 \mathrm{~L}=1000 \mathrm{~cm}^{3}$
TABLE 1.4 Some Useful Conversions			
Measurement	English Unit	English	uality ${ }^{\text {a }}$
Length	inch	$1 \mathrm{in} .=$	
	yard	$1 \mathrm{yd}=$	
	mile	$1 \mathrm{mi}=$	
Mass	pound	$1 \mathrm{lb}=$	
	ounce (mass)	$1 \mathrm{oz}=$	
Volume	gallon	$1 \mathrm{gal}=$	
	quart	$1 \mathrm{qt}=9$	

Laboratory Measurements

Four common

1. Length
2. Volume
3. Mass
4. Temperature

Laboratory Measurements

1. Length

- SI Unit is meter (m)
- Meter too large for most laboratory measurements
- Commonly use
- Centimeter (cm)

$$
1 \mathrm{~cm}=10^{-2} \mathrm{~m}=0.01 \mathrm{~m}
$$

- Millimeter (mm)
$1 \mathrm{~mm}=10^{-3} \mathrm{~m}=0.001 \mathrm{~m}$

2. Volume

- Dimensions of (length) ${ }^{3}$
- SI unit for Volume = m^{3}
- Most laboratory measurements use V in liters (L)
$1 \mathrm{~L}=1 \mathrm{dm}^{3}$
Chemistry glassware marked in L or mL $1 \mathrm{~L}=1000 \mathrm{~mL}$
- What is a mL ?
$1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$

Volumetric flask

3. Mass

- SI unit is kilogram (kg)
- Frequently use grams (g) in laboratory as more realistic size
- $1 \mathrm{~kg}=1000 \mathrm{~g} \quad 1 \mathrm{~g}=0.001 \mathrm{~kg}=\frac{1}{1000} \mathrm{~g}$
- Mass is measured by comparing weight of sample with weights of known standard masses
- Instrument used = balance

4. Temperature

- Measured with thermometer
- Three common scales
A. Fahrenheit scale
- Common in US
- Water freezes at $32^{\circ} \mathrm{F}$ and boils at $212^{\circ} \mathrm{F}$
- 180 degree units between melting and boiling points of water

4. Temperature

B. Celsius scale

- Most common for use in science
- Water freezes at $0^{\circ} \mathrm{C}$
- Water boils at $100^{\circ} \mathrm{C}$
- 100 degree units between melting and boiling points of water

4. Temperature

C. Kelvin scale

- SI unit of temperature is kelvin (K)
- Note: No degree symbol in front of K
- Water freezes at 273.15 K and boils at 373.15 K
- 100 degree units between melting and boiling points
- Only difference between Kelvin and Celsius scale is zero point
Absolute Zero
- Zero point on Kelvin scale
- Corresponds to nature's lowest possible temperature

Temperature Conversions

How to convert between ${ }^{\circ} \mathrm{F}$ and ${ }^{\circ} \mathrm{C}$?

$$
{ }^{0} \mathrm{~F}=\frac{9}{5} \times{ }^{0} \mathrm{C}+32
$$

$$
32{ }^{\circ} \mathrm{F}=0^{\circ} \mathrm{C}
$$

$$
212^{\circ} \mathrm{F}=100^{\circ} \mathrm{C}
$$

Temperature Conversions

- Common laboratory thermometers are marked in Celsius scale
- How to convert to Kelvin scale

$$
\mathrm{K}={ }^{\circ} \mathrm{C}+273.15
$$

$$
\begin{gathered}
273.15 \mathrm{~K}=0^{\circ} \mathrm{C} \\
373.15 \mathrm{~K}=100^{\circ} \mathrm{C}
\end{gathered}
$$

- Amounts to adding 273.15 to Celsius temperature
Example: What is the Kelvin temperature of a solution at $25^{\circ} \mathrm{C}$?

$$
T_{\mathrm{K}}=\left(25^{\circ} \mathrm{C}+273.15^{\circ} \mathrm{C}\right) \frac{1 \mathrm{~K}}{1^{\circ} \mathrm{C}}=298 \mathrm{~K}
$$

1. Convert $121{ }^{\circ} \mathrm{F}$ to the Celsius scale.

$$
\begin{aligned}
& { }^{\circ} \mathrm{F}=\frac{9}{5} \times{ }^{\circ} \mathrm{C}+32 \quad t_{\mathrm{C}}=\left(t_{\mathrm{F}} \quad 32^{\circ} \mathrm{F}\right) \quad \frac{5^{\circ} \mathrm{C}}{9^{\circ} \mathrm{F}} \dot{\bar{\prime}} \\
& \mathrm{t}_{\mathrm{C}}=\left(121^{\circ} \mathrm{F}-32^{\circ} \mathrm{F}\right)\left(\frac{5^{\circ} \mathrm{C}}{9^{\circ} \mathrm{F}}\right)=49^{\circ} \mathrm{C}
\end{aligned}
$$

2. Convert $121{ }^{\circ} \mathrm{F}$ to the Kelvin scale.

- We already have in ${ }^{\circ} \mathrm{C}$ so...

$$
\begin{aligned}
\mathrm{T}_{K} & =\left(\mathrm{t}_{C}+273.15^{\circ} \mathrm{C}\right) \frac{1 \mathrm{~K}}{1^{\circ} \mathrm{C}}=\left(49+273.15^{\circ} \mathrm{C}\right) \frac{1 \mathrm{~K}}{1^{\circ} \mathrm{C}} \\
\boldsymbol{T}_{\mathbf{K}} & =332 \mathrm{~K}
\end{aligned}
$$

3. Convert 77 K to the Celsius scale.

$$
\begin{aligned}
& T_{\mathrm{K}}=\left(t_{\mathrm{c}}+273.15^{\circ} \mathrm{C}\right) \frac{1 \mathrm{~K}}{1^{\circ} \mathrm{C}} \quad t_{\mathrm{C}}=\left(\begin{array}{ll}
T_{\mathrm{K}} & 273.15 \mathrm{~K}
\end{array}\right) \frac{1^{\circ} \mathrm{C}}{1 \mathrm{~K}} \\
& t_{\mathrm{c}}=\left(\begin{array}{ll}
77 \mathrm{~K} & 273.15 \mathrm{~K}
\end{array}\right) \frac{1^{\circ} \mathrm{C}}{1 \mathrm{~K}}=\mathbf{- 1 9 6}{ }^{\circ} \mathrm{C}
\end{aligned}
$$

4. Convert 77 K to the Fahrenheit scale.

- We already have in ${ }^{\circ} \mathrm{C}$ so

$$
t_{\mathrm{F}}=\frac{9^{\circ} \mathrm{F}}{5^{\circ} \mathrm{C}} \dot{\stackrel{3}{ }}\left(196^{\circ} \mathrm{C}\right)+32^{\circ} \mathrm{F}=-321^{\circ} \mathrm{F}
$$

The melting point of $U F_{6}$ is $64.53^{\circ} \mathrm{C}$. What is the melting point of uranium UF_{6} on the Fahrenheit scale?
A. $67.85{ }^{\circ} \mathrm{F}$
B. $96.53{ }^{\circ} \mathrm{F}$
C. $116.2^{\circ} \mathrm{F}$
D. $337.5^{\circ} \mathrm{F}$
E. $148.2^{\circ} \mathrm{F}$

$$
\begin{aligned}
& t_{\mathrm{F}}=\frac{9^{\circ} \mathrm{F}}{5^{\circ} \mathrm{C}} \div t_{\mathrm{C}}+32^{\circ} \mathrm{F} \\
& t_{\mathrm{F}}=\frac{9^{\circ} \mathrm{F}}{5^{\circ} \mathrm{C}} \div 64.53^{\circ} \mathrm{C}+32^{\circ} \mathrm{F}
\end{aligned}
$$

SI Units

- All physical quantities will have units derived from these seven SI base units
e.g., Area
- Derived from SI units based on definition of area
- length \times width $=$ area
- meter \times meter $=$ area

$$
\mathrm{m} \times \mathrm{m}=\mathrm{m}^{2}
$$

- SI unit for area $=$ square meters $=\mathrm{m}^{2}$

Note: Units undergo same kinds of mathematical operations that numbers do

TABLE 1.3	Derived Units	
Quantity	Definition of Quantity	SI Unit
Area	Length squared	m^{2}
Volume	Length cubed	m^{3}
Density	Mass per unit volume	$\mathrm{kg} / \mathrm{m}^{3}$
Speed	Distance traveled per unit time	m / s
Acceleration	Speed changed per unit time	$\mathrm{m} / \mathrm{s}^{2}$
Force	Mass times acceleration of object	$\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}(=$ newton, N$)$
Pressure	Force per unit area	$\mathrm{kg} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}^{2}\right)(=$ pascal, Pa)
Energy	Force times distance traveled	$\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}(=$ joule, J)

- What is the SI derived unit for velocity?

Velocity $(v)=\frac{\text { distance }}{\text { time }}$
time
Velocity units $=\frac{\text { meters }}{\text { seconds }}=\frac{\mathrm{m}}{\mathrm{s}}$

- What is the SI derived unit for volume of a cube?

Volume (V) $=$ length \times width \times height
$V=$ meter \times meter \times meter
$\boldsymbol{V}=\mathrm{m}^{\mathbf{3}}$

What is the SI derived unit for acceleration
(hint: acceleration = distance/time²)?
A. $\mathrm{mm} / \mathrm{min}$
B. $\mathrm{yd} / \mathrm{hr}^{2}$
C. $\mathrm{m} / \mathrm{s}^{2}$
D. m / s
E. ft^{3}

Volume - SI derived unit for volume is cubic meter $\left(\mathrm{m}^{3}\right)$

$$
\begin{aligned}
& 1 \mathrm{~cm}^{3}=\left(1 \times 10^{-2} \mathrm{~m}\right)^{3}=1 \times 10^{-6} \mathrm{~m}^{3} \\
& 1 \mathrm{dm}^{3}=\left(1 \times 10^{-1} \mathrm{~m}\right)^{3}=1 \times 10^{-3} \mathrm{~m}^{3} \\
& 1 \mathrm{~L}=1000 \mathrm{~mL}=1000 \mathrm{~cm}^{3}=1 \mathrm{dm}^{3}
\end{aligned}
$$

$$
1 \mathrm{~mL}=1 \mathrm{~cm}^{3}
$$

Dimensional Analysis Method of Solving Problems

1. Determine which unit conversion factor(s) are needed
2. Carry units through calculation
3. If all units cancel except for the desired unit(s), then the problem was solved correctly.
given quantity x conversion factor $=$ desired quantity

$$
\text { given unit } x \frac{\text { desired unit }}{\text { given unit }}=\text { desired unit }
$$

A person's average daily intake of glucose (a form of sugar) is 0.0833 pound (lb). What is this mass in milligrams (mg) ? ($1 \mathrm{lb}=453.6 \mathrm{~g}$.)
pounds \longrightarrow grams \longrightarrow milligrams

$$
\frac{453.6 \mathrm{~g}}{1 \mathrm{lb}} \text { and } \frac{1 \mathrm{mg}}{1 \times 10^{-3} \mathrm{~g}}
$$

$? \mathrm{mg}=0.0833 \not \emptyset \times \frac{453.6 \not \subset}{1 \not \wp} \times \frac{1 \mathrm{mg}}{1 \times 10^{-3} \varnothing}=3.78 \times 10^{4} \mathrm{mg}$
Q) A liquid helium storage tank has a volume of 275 L . What is the volume in m^{3} ?
Q) The density of liquid nitrogen at its boiling point $\left(-196^{\circ} \mathrm{C}\right.$ or 77 K) is $0.808 \mathrm{~g} / \mathrm{cm}^{3}$. Convert the density to units of $\mathrm{kg} / \mathrm{m}^{3}$.

$$
\begin{aligned}
& \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}} \text { and } \frac{1 \mathrm{~cm}^{3}}{1 \times 10^{-6} \mathrm{~m}^{3}} \\
& ? \mathrm{~kg} / \mathrm{m}^{3}=\frac{0.808 \not \varnothing^{\prime}}{1 \mathrm{sm}^{3}} \times \frac{1 \mathrm{~kg}}{1000 \not \varnothing^{\circ}} \times \frac{1 \mathrm{sm}^{3}}{1 \times 10^{-6} \mathrm{~m}^{3}}=808 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

Example: How to convert a person's height from 68.0 in to cm ? if $2.54 \mathrm{~cm}=1 \mathrm{in}$.

Example: Convert 0.097 m to mm .

Example: Convert $3.5 \mathrm{~m}^{3}$ to cm^{3}.

Q) Convert speed of light from $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$ to $\mathrm{mi} / \mathrm{hr}$ ($1 \mathrm{mi}=1.609 \mathrm{~km}$)

The Toyota Camry hybrid electric car has a gas mileage rating of 56 miles per gallon. What is this rating expressed in units of kilometers per liter?

$$
1 \mathrm{gal}=3.784 \mathrm{~L} \quad 1 \text { mile }=1.609 \mathrm{~km}
$$

A. $1.3 \times 10^{2} \mathrm{~km} \mathrm{~L}^{-1}$
B. $24 \mathrm{~km} \mathrm{~L}^{-1}$
C. $15 \mathrm{~km} \mathrm{~L}^{-1}$
$56 \frac{\text { phi }}{\text { gait }} \times \frac{1 \text { gal }}{3.784 \mathrm{~L}} \times \frac{1.609 \mathrm{~km}}{1 \mathrm{mj}}$
D. $3.4 \times 10^{2} \mathrm{~km} \mathrm{~L}^{-1}$
E. $9.2 \mathrm{~km} \mathrm{~L}^{-1}$

The volume of a basketball is $433.5 \mathrm{in}^{3}$. Convert this

 to $\mathrm{mm}^{3} .(1 \mathrm{in} .=2.54 \mathrm{~cm})$A. $1.101 \times 10^{-2} \mathrm{~mm}^{3}$
B. $7.104 \times 10^{6} \mathrm{~mm}^{3}$
C. $7.104 \times 10^{4} \mathrm{~mm}^{3}$
D. $1.101 \times 10^{4} \mathrm{~mm}^{3}$
E. $1.101 \times 10^{6} \mathrm{~mm}^{3}$

Density

- Ratio of object's mass to its volume

$$
\text { density }=\frac{\text { mass }}{\text { volume }} \quad d=\frac{m}{V}
$$

- Units (depends on what units we use for mass and volume.
$-\mathbf{g} / \mathrm{mL}$ or $\mathbf{g / c m} \mathbf{c m}^{\mathbf{3}}$
- $\mathbf{O r} \mathbf{g} / \mathbf{L}$ or kg/L
- A student weighs a piece of gold that has a volume of $11.02 \mathrm{~cm}^{3}$ of gold. She finds the mass to be 212 g . What is the density of gold?

$$
\begin{aligned}
& d=\frac{m}{V} \\
& d=\frac{212 \mathrm{~g}}{11.02 \mathrm{~cm}^{3}}=19.3 \mathrm{~g} / \mathrm{cm}^{3}
\end{aligned}
$$

Another student has a piece of gold with a volume of $1.00 \mathrm{~cm}^{3}$. What does it weigh? $\mathbf{1 9 . 3} \mathbf{~ g}$ What if it were $2.00 \mathrm{~cm}^{3}$ in volume? $38.6 \mathbf{g}$
(Q) If the density of an object is $2.87 \times 10^{-4} \mathrm{lbs} /$ cubic inch, what is its density in g / mL ? $(1 \mathrm{lb}=454 \mathrm{~g}, 1$ inch $=2.54 \mathrm{~cm})$

[^0]: *Greek letter mu, pronounced "mew."

[^1]: ${ }^{\text {a }}$ Prefixes in red type are used most often.
 ${ }^{\mathrm{b}}$ Numbers in these columns can be interchanged with the corresponding prefix.

