Cholinoceptor - Activating & Cholinesterase-Inhibiting Drugs - 1
Cholinocceptor stimulants

Heart and smooth muscle
Nerve
Glands and endothelium

Alkaloids
Direct-acting drugs
Choline esters

Receptors
Muscarinic
Nicotinic

↑ ACh
Indirect-acting drugs
Reversible
Irreversible

Neuromuscular end plate, skeletal muscle
Autonomic ganglion cells

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.
Choline Ester ACE Muscarinic Nicotinic

Acetylcholine ++++ +++ +++
Methacholine + ++++ None
Carbachol Negligible ++ +++
Bethanechol Negligible ++ None
Mechanism of Action
Muscarinic transmission in the heart

Ach activates M2R linked via **Gi** protein to a **K+** channel
Causing **hyperpolarization**.

Voltage-dependent opening of pacemaker Na+ channels is shifted to more negative Potentials

The phosphorylation of L-type Ca2+ channels is reduced. M2R stimulates Gi protein $\downarrow\rightarrow\downarrow$ adenylyl cyclase \rightarrow \downarrow cAMP formation \rightarrow \downarrow HR & \downarrow force of contraction.
Nicotinic transmission at the neuromuscular junction.
Ach interacts with subunits of the nicotinic receptor to open it, allowing Na+ to produce an excitatory postsynaptic potential (EPSP). The EPSP depolarizes the muscle membrane, generating an action potential, and triggering contraction. The extracellular Acetylcholinesterase (AChE) hydrolyzes Ach.
Effects of Direct-Acting Cholinoceptor Stimulants

- **Organ**
- **Eye**
 - Sphincter muscle of iris
 - Ciliary muscle
 - Contraction (miosis).
 - Contraction for near vision facilitation of aqueous humor outflow into the canal of Shlemm.

- **Heart**
 - Sinoatrial node
 - Atria
 - Decrease in rate (negative chronotropy)
 - Decrease in contractile strength (negative inotropy).

- Atrioventricular node
 - Decrease in conduction velocity (negative dromotropy). Increase in refractory period.

- Ventricles
 - Small decrease in contractile strength
Blood vessels
Arteries
Veins

Dilation via nitric oxide (NO)

Lung
Bronchial muscle
Bronchial glands

Contraction (bronchoconstriction)
Stimulation

Gastrointestinal tract
Motility
Sphincters
Secretion

Increase
Relaxation
Stimulation

Urinary bladder
Detrusor
Trigone and sphincter

Contraction
Relaxation voiding of urine

Glands
Sweat, salivary, lacrimal
, nasopharyngeal

↑ Secretion
Organ System Effects

Cardiovascular System: M2

- IV infusions of low doses of Ach cause vasodilation, reduction in blood pressure, and a reflex increase in heart rate.
- Larger doses of Ach produce bradycardia and decrease a AV node conduction velocity and hypotension.
- Decrease the contractility of atrial & ventricular cells.
- The direct slowing of sinoatrial rate & atrioventricular conduction is often opposed by reflex sympathetic discharge, elicited by the decrease in blood pressure.
• IV injection of muscarinic agonists produces marked vasodilation.
• Muscarinic agonists release nitric oxide (NO), from the endothelial cells.
• The NO diffuses to adjacent vascular smooth muscle, where it activates guanylyl cyclase & increases cGMP, resulting in relaxation.
Pilocarpine
Natural alkaloid may produce hypertension after a brief initial hypotension. The longer-lasting hypertensive Effect is due to sympathetic ganglionic activation caused by activation of M1 receptors, which elicit slow excitatory postsynaptic potentials. This effect, like the hypotensive effect, can be blocked by atropine, an antimuscarinic drug.

Respiratory System:
Bronchoconstriction and increase bronchial secretion.
Gastrointestinal Tract:
- increases the secretory and motor activity of the gut.
- The salivary and gastric glands are strongly stimulated.
- Peristaltic activity is increased and most sphincters are relaxed.
- The **M3** receptor is required for direct activation of smooth muscle contraction, whereas the **M2** receptor reduces cAMP formation & relaxation caused by sympathomimetic drugs.
Genitourinary Tract:

• Stimulate the detrusor muscle and relax the trigone and sphincter muscles of the bladder, thus promoting voiding.
• The function of M2 and M3 receptors in the urinary bladder is the same as in intestinal smooth muscle.
• The human uterus is not sensitive to muscarinic agonists.

Miscellaneous Secretory Glands

• Muscarinic agonists stimulate secretion of sweat, lacrimal, and nasopharyngeal glands
Central Nervous System:
The CNS contains both muscarinic and nicotinic receptors, the brain is richer in muscarinic sites and the spinal cord contains more nicotinic sites.

Pilocarpine is used to induce chronic epilepsy in rats, to examine different treatments (M1 effect).

Presynaptic nicotinic receptors regulate the release of several neurotransmitters.

In high concentrations, nicotine induces tremor, emesis, and stimulation of the respiratory center. At still higher levels, nicotine causes convulsions & fatal coma.
Autonomic ganglia:

CVS

- CVS: In the CVS, the effects of nicotine are chiefly *sympathomimetic*.
- Nicotine causes hypertension, tachycardia which may alternate with a bradycardia mediated by vagal discharge.

GIT and urinary tracts:

- The effects are *parasympathomimetic*: nausea, vomiting, diarrhea, and voiding of urine.
- Prolonged exposure may result in depolarizing blockade of the ganglia.
Neuromuscular Junction:

• Nicotinic applied directly causes contractile response varies from disorganized **fasciculations** to a strong contraction of the entire muscle.

• Nicotine also causes rapid development of **depolarization blockade**; transmission blockade persists even when the membrane has repolarized.

• This latter phase of block is manifested as flaccid paralysis of skeletal muscle.
Indirect-Acting Cholinomimetics

Reversible Cholinesterase inhibitors.

Neostigmine
an ester composed of carbamic acid ([1]) and a phenol bearing a quaternary ammonium group([2]).

Physostigmine
A naturally occurring carbamate, is a tertiary amine.

Edrophonium is not an ester but binds to the active site of the enzyme.
The positively charged nitrogen in the acetylcholine molecule is attracted to the ionic site on acetylcholinesterase, and hydrolysis is catalyzed at the esteric site to form choline and acetic acid.
Stabilized by an ionic bond at the anionic site and a hydrolyzable covalent bond at the esteratic site, e.g.,

Neostigmine

Stabilized by an ionic bond at the anionic site and through weak hydrogen bonding at the esteratic site.
Irreversible cholinesterase inhibitors.
organophosphate

Structures of some organophosphate cholinesterase inhibitors.
The dashed lines indicate the bond that is hydrolyzed in binding to the enzyme.
The shaded ester bonds in malathion represent the points of detoxification of the molecule in mammals and birds.

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.
A cholinesterase inhibitor attaches to the serine hydroxyl group on ACh.E. This prevents acetylcholine from interacting with the cholinesterase enzyme and being broken down.
Absorption, Distribution, and Metabolism

- Absorption of the quaternary carbamates from the conjunctiva, skin, and lungs is poor, since their permanent charge renders them relatively insoluble in lipids.
- Thus, much larger doses are required for oral administration than for parenteral injection.
- Distribution into the CNS is negligible. Physostigmine, in contrast, is well absorbed from all sites and can be used topically in the eye.
- It is distributed into the CNS and is more toxic than the more polar quaternary carbamates.
• The carbamates metabolized by nonspecific esterases and by cholinesterase.
• The **duration** of their effect is determined chiefly by the **stability of the inhibitor-enzyme complex** , not by metabolism or excretion.

• The organophosphates are **well absorbed** from the skin, lung, gut, and conjunctiva—thereby making them dangerous to humans and highly effective as insecticides.
• Parathion, malathion, must be activated in the body by conversion to the oxygen analogs
Therapeutic Uses and Durations of Action of Cholinesterase Inhibitors

<table>
<thead>
<tr>
<th>Uses</th>
<th>Approximate Duration of Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohols</td>
<td></td>
</tr>
<tr>
<td>Edrophonium</td>
<td>Myasthenia gravis, ileus,</td>
</tr>
<tr>
<td>Carbamates and related agents</td>
<td></td>
</tr>
<tr>
<td>Neostigmine</td>
<td>Myasthenia gravis, ileus</td>
</tr>
<tr>
<td>Pyridostigmine</td>
<td>Myasthenia gravis</td>
</tr>
<tr>
<td>Physostigmine</td>
<td>Glaucoma</td>
</tr>
<tr>
<td>Ambenonium</td>
<td>Myasthenia gravis</td>
</tr>
<tr>
<td>Demecarium</td>
<td>Glaucoma</td>
</tr>
<tr>
<td>Organophosphates</td>
<td></td>
</tr>
<tr>
<td>Echothiophate</td>
<td>Glaucoma</td>
</tr>
</tbody>
</table>