

ACUTE LOWER LIMB ISCHEMIA

Dr. Mahmoud ABU-ABEELEH
The University of JORDAN.
Faculty of Medicine.

Introduction

- Definition/Incidence.
- □ Pathophysiology of ACUTE ISCHEMIA embolic/thrombotic
- Diagnosisclinical hx/PENeed for imaging's
- □ Classification of acute ischemia
- Management

Definition/Incidence

- Acute limb ischemia occurs when there is an abrupt interruption of blood flow to an extremity .
- □ Either embolic or thrombotic vascular occlusion.
- □ 1.7/10,000 per year
- □ Mortality 25%
- □ Amputation 20%

Acute Limb Ischemia

- □ The most common vascular emergency
- Acute thrombotic occlusion of a pre-existing stenotic arterial segment (60%).

□ Thromboembolism (30%)

- □ And trauma, may be iatrogenic.
- □ It is often but not always possible to distinguish these two conditions on clinical grounds alone

Etiology Of Acute Limb Ischemia

Embolus	Thrombosis	Trauma	
Cardiac source	Vascular grafts	Blunt	
Atrial fibrillation	Atherosclerosis Penetrating		
Myocardial infarction	Thrombosis of aneurysm latrogenic		
Endocarditis	Entrapment syndrome		
Valvular disease	Hypercoagulable state		
Atrial myxoma	Low flow state		
Prosthetic valves			
Arterial source			
Aneurysm			
Atherosclerotic plaque			
Paradoxical embolus			

Clinical features	Embolus	Thrombosis	
Severity	Complete ischaemia (no collaterals)	Incomplete ischaemia (collaterals)	
Onset	Seconds or minutes	Hours or days	
Limb	Leg 3:1 arm	Leg 10:1 arm	
Multiple sites	Up to 15%	Rare	
Embolic source	Present (usually AF)	Absent	
Previous claudication	Absent	Present	
Palpation of artery	Soft; tender	Hard/calcified	
Bruits	Absent	Present	
Contralateral leg pulses	Present	Absent	
Diagnosis	Clinical	Angiography	
Management	Embolectomy, warfarin	Medical, bypass, thrombolysis	
Prognosis	Loss of life > loss of limb	Loss of limb > loss of life	

Frequencies of emboli sites lodgement

- □ Femoral 28 percent
- □ Arm 20 percent
- □ Aortoiliac 18 percent
- □ Popliteal 17 percent
- □ Visceral and other 9 percent each
- □ Emboli typically lodge where there is an acute narrowing of the artery, or a point where the vessel branches;

Pertinent Elements in Vascular History

- ☐ History of stroke or transient ischemic attack
- ☐ History of coronary artery disease.
- ☐ History of peripheral arterial disease
- ☐ History of diabetes
- ☐ History of hypertension
- ☐ History of tobacco use
- □ History of hyperlipidemia

CLINICAL EVALUATION

The six "P's" of acute ischemia are:

- □ Pain
- Pulselessness
- □ Pallor
- Paresthesias
- □ Paralysis
- □ Poikilothermia

Symptoms/signs

- □ Pain May be absent in complete acute ischemia; severe pain is also a feature of chronic ischemia
- □ Pallor Also a feature of chronic ischemia
- □ Pulseless Also a feature of chronic ischemia
- □ Perishing cold Unreliable, as the ischemic limb takes on the ambient temperature

□ Paralysis, paraesthesia and muscle tenderness are the cardinal signs of complete acute ischemia.

□ The limb must be revascularized within 4-6 hours if it is to be saved and full function restored.

Classification of acute extremity ischemia SVS/ISCVS

	Category		
	Viable	Threatened	Nonviable
Pain	Mild	Severe	Variable
Capillary refill	Intact	Delayed	Absent
Motor deficit	None	Partial	Complete
Sensory deficit	None	Partial	Complete
Arterial Doppler	Audible	Inaudible	Inaudible
Venous Doppler	Audible	Audible	Inaudible
Treatment	Urgent work-up	Emergency surgery	Amputation

Classification of acute limb ischemia

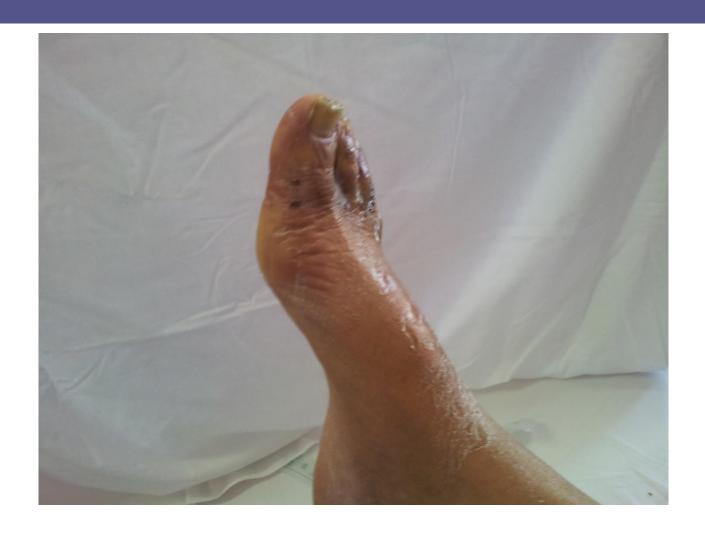
According to Rutherford

	Viable (I)*	Marginally threatened (IIa)*	Immediately threatened (IIb)*	Nonviable (III)*
Pain	Mild	Moderate	Severe	Variable
Capillary refill	Intact	Delayed	Delayed	Absent
Motor deficit	None	None	Partial	Complete, paralysis (rigor)
Sensory deficit	None	None or minimal (toes)	More than toes	Complete, anesthetic
Arterial Doppler	Audible	lnaudible	lnaudible	lnaudible
Venous Doppler	Audible	Audible	Audible	lnaudible
Treatment	Urgent evaluation	Urgent revascularization	Emergency revascularization	Amputation

Limb ischaemia is classified on the basis of onset and severity

Incomplete acute ischaemia (usually due to thrombosis in situ) can often be treated medically, at least in the first instance.

Complete ischaemia (usually due to embolus) will normally result in extensive irreversible tissue injury within 6 hours unless the limb is revascularized.


Irreversible ischemia mandates early amputation.

Natural History

- At first, acute complete ischaemia is associated with intense distal arterial spasm and the limb is 'marble' white.
- As the spasm relaxes over the next few hours and the skin fills with deoxygenated blood, mottling appears. This is light blue or purple, has a fine reticular pattern and blanches

As ischemia progresses, blood coagulates in the skin, leading to mottling that is darker in colour, coarser in pattern and does not blanch.

Finally, large patches of fixed staining progress to blistering and liquefaction

Pain on squeezing the calf indicates muscle infarction and impending irreversible ischaemia.

Attempts at revascularization at this late stage are futile and will lead to life-threatening reperfusion injury

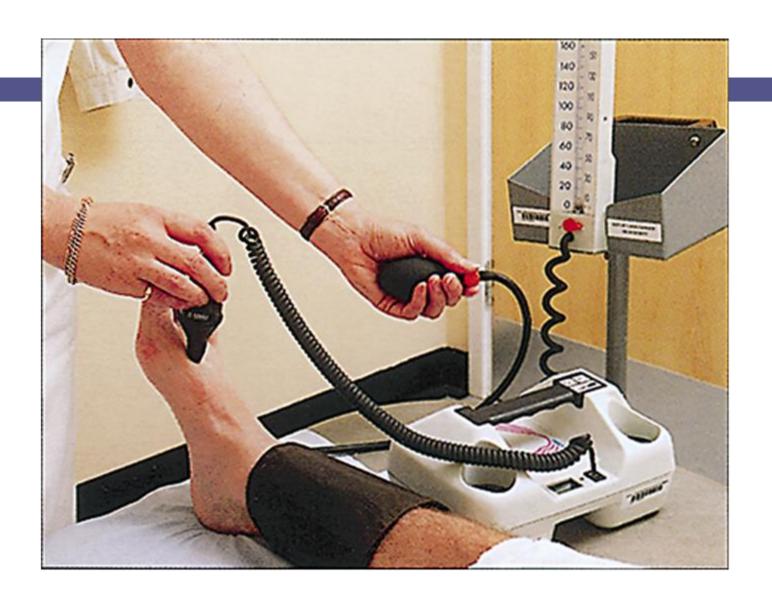


Figure 1.5

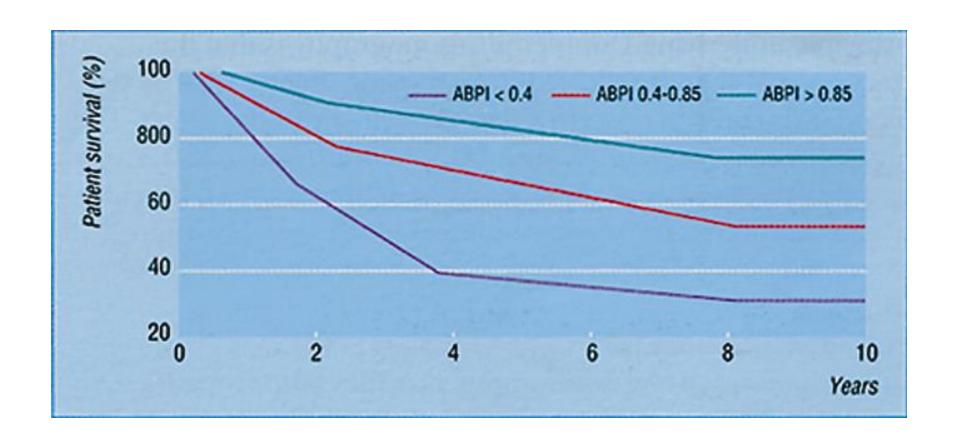
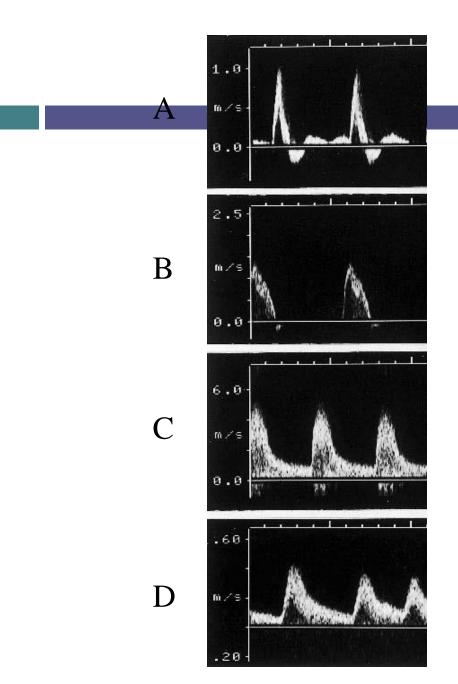



Figure 1.2

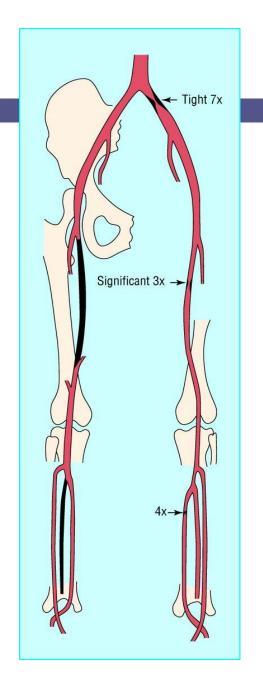
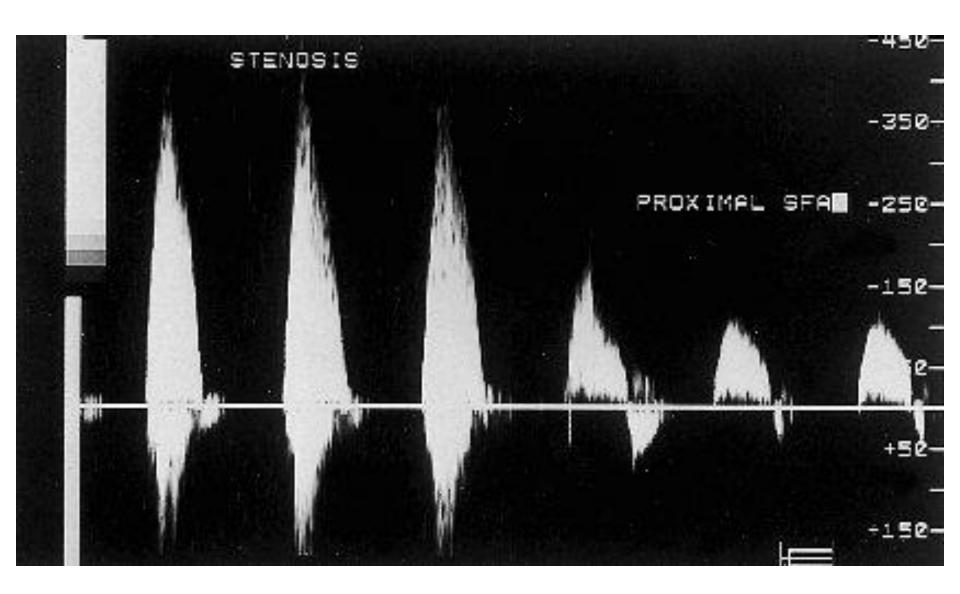



Figure 1.3

European Society for Vascular Surgery (ESVS) 2020 Clinical Practice Guidelines on the Management of Acute Limb Ischaemia

Table 3. Summary of imaging modalities in acute limb ischaemia					
Modality	Availability*	Accuracy	Invasiveness	Therapeutic potential	Evaluation of entire vascular tree and adjacent structures
Duplex ultrasound	±	++	-	-	+
Computed tomography angiography	++	+++	-	-	+++
Contrast enhanced magnetic resonance	+	++	-	-	++
angiography					
Digital subtraction angiography	++	+++	+	+	+

^{*} Availability is very much dependent on local conditions.

Arteriography

- Arteriography can usually distinguish between thrombosis and embolism
- An embolus

Sharp cutoff with a rounded reverse meniscus sign.

Intraluminal filling defect

Otherwise normal vessels,

Absence of collateral circulation,

Multiple filling defects.

Arterial thrombosis
 Sharp or tapered, but not rounded cutoff.

Diffuse atherosclerosis with

Well developed collateral circulation

Management

- Cardiac evaluation
- □ IV fluids
- □ IV Heparin

□ Treatment

Viability of the limb.

Options include surgery and thrombolytics

- If embolism is obvious, embolectomy is performed,
- □ but if the diagnosis lacks certainty, an angiogram avoids a blind procedure.

Operative angiography

□ The surgical revascularisation required

The non-threatened limb

☐ If sensation and movement are present and calf tenderness is absent, A period of medical optimization and heparin therapy

Angiography and reconstruction can then be done

Thrombolytic Agents

□ Streptokinase/Urokinase

 \square Rt –PA

□ Rt– PA is an alternative treatment to embolectomy

Indications of Intra-Arterial Thrombolysis

- Acute thrombotic arterial occlusion are considered the ideal candidates for lytic therapy
- Thrombolysis of arterial emboli has had mixed success.
- Clot in thrombosed bypass grafts

The threatened limb

- Loss of sensation/loss of active movement
- Pain on passive movement and when the calf muscles are squeezed.
- □ A maximum of 6 hours to re-establish normal flow to avoid irreversible nerve and muscle injury

Fasciotomy should always be considered upon successful reperfusion to avoid compartment syndrome.

The non-viable limb

□ Features that indicate the limb is no longer salvageable include:

fixed staining of tissues

lack of blanching on pressure

anaesthesia with rigid muscles – rigor mortis.

These patients should not undergo an evaluation to define vascular anatomy or efforts to attempt revascularization.

SUMMARY Management of a limb threatened by acute ischemia

- □ Make cardiorespiratory assessment of the patient
- Provide O2 therapy and BP optimisation as necessary
- □ Provide analgesia
- Arrange blood tests (including clotting and cross match),
- □ ECG and chest X-ray
- □ Keep nil by mouth and give i.v. fluids

SUMMARY Management of a limb threatened by acute ischemia

- □ Start i.v. heparin 5000 IU stat and 1000 IU/hour
- □ Arrange imaging duplex ultrasound, arteriogram or on-table arteriogram
- Obtain consent
- □ Consider Intra-Arterial Thrombolysis
- □ Perform Embolectomy/arterial reconstruction and consider fasciotomies

□ SUMMARY

QUESTIONS