Anemia 2: Fourth year Medical Students/ 17.11.2020

Abdallah Awidi Abbadi.MD.FRCP Feras M Fararjeh, MD

Anemia (2): 17.11.2020 Case 2

65 yr old male had gradual onset of "odd" behavior with psychotic symptoms, irritability and (numbress) parasthesia in hands and feet

> He was noticed to have imbalanced gait. Examination showed loss of vibration

and proprioception in lower limbs

loss of vibration and proprioreption

Physical And Lab

Risk Packor of BIZ deficiency? Ostrict vegans -> should Le supplemented E) Baribanic surgeries, ang gastric surger, positive parietal cells antibodies (loss of intrinsic factors)

(3) Any disease Pathogensis of Pernicious Anemia (PA) Affecting the Neum

(crown's, 1-PA is the end-stage of Atrophic Body Gastritis (ABG) Clars, causing oxyntic gastric mucosa damage: achlorhydria.

2-It is considered an autoimmune disease (AID).

3-AID theory is based on the presence of parietal cell (c) medication and/or intrinsic factor autoantibodies such Frequent association with other autoimmune (c) chacies disorders: autoimmune thyroid disease (ATD), type 1 metho(min) diabetes, and vitiligo

*B12 should be administleved as soon as possible as (5)elderly people this damage could be irreversible ->give potients supplement as soon as you suspect (there's no significant of B12 ourdose -> can be easily scoreted in the liver)

A-Before therapy

B-Post-therapy

A-Hyperinte nse in cervical region

Bcorrected

Subacute Combined Degeneration of Spinal Cord

Other causes of cobalamin deficiency

Gastric causes of impaired absorption: Gastrectomy/gastric sleeve operations

Corpus-predominant H pylori gastritis

Long-term proton pump inhibitor therapy

Ileal disease or resection

Blind loop syndrome

Fish tapeworm

Severe pancreatic insufficiency

Decreased intake due to vegetarianism

Other causes of macrocytic anemia

Folate deficiency

Drugs (e.g. metformin, methotrexate, azathioprine, 6mercaptopurine)

erythropoiesis: hemolysis, response to hemorrhage)

Liver disease (alcoholic, cirrhosis, poor dietary intake)

Hypoplastic anemia, myelodysplastic syndrome

Case 2 : Treatment & Monitoring

No Blood Transfusion

Vit B12 IM injections daily 7-10 days. Then injectione monthly lifelong. monthly lifelong. Careful monitoring of response

Careful monitoring for thyroid function & DM

Response to Treatment

Reticulocytosis in 3-4days, peak 5-10 days Rise in Hgb concentration within 10 days and normalization in 8-10 weeks as well as correction of MCV. Took inform for severe for other correct Fall of serum LDH levels within 2 days Hypersegmented PMN disappear in 10-14 days Watch closely for severe hypokalemia during early response.

Megaloblastic changes disappear within 2 days

Case 2 B

65 yr old male had "anemia syndrome" over the last 6 weeks. He noticed abdominal swelling and weight loss. He had mild fever and night sweats for 2 weeks. No neurological symptoms or signs.

Hb 9, MCV 106, WBC 5.3, Plt 142, Retics (corrected)0.1%. Serum B12 normal. LDH 1100. serum folate was 0.2 present in green load Abdominal Ct Biopsy (undif. sarcoma)

Causes of Folic acid deficiency

1. Inadequate intake

- diet lacking fresh, uncook food; chronic alcoholism, total parenteral nutrition,

2. Malabsorption

<u>Malabsorption</u> - small bowel disease (sprue, celiac disease,) - ony patint with resected small - alcoholism

bowel

- alcoholism

3. Increased requirements:

- pregnancy and lactation (very incremal durand)
- infancy
- malignancy such as aggressive concorrence (increasing in size my myielly) hemodialized
- hemodialysis

4. Defective utilisation

Drugs:folate antagonists(methotrexate, trimethoprim, triamteren), purine analogs (azathioprine), primidine analogs (zidovudine), RNA reductase inhibitor (hydroxyurea), miscellaneous (phenytoin, N_2)

Case 2 B: Treatment and follow-up Case 2 B:

Treat the original Cause

Oral administration of folic 5 mg x2daily, for

3 months, and maintenance therapy if it is necessary. "Month of the in 12 form especially if you're superhy Retics after 5-7 days.

Correction of anaemia after 2 months

therapy.

Folic acid has role in neural tube closure in foetus, a pregnant woman should have enough folate to protect her foetus from having neural tube defects

Myelomeningocele, Axial schematic of myelomeningocele shows neural placode (*star*) protruding above skin surface due to expansion of underlying subarachnoid space (*arrow*).

Myelomeningocele. Axial T2weighted MR image My

Myelomeningocele. Sagittal T2weighted MR image).

*Age: derlies 58-69 * Anemia + peripheral Mondocyhpenia a leukopenia (pancytopenia) V Reticulacyte cumt Case 2C

48 yr old lady presented with "anemia syndrome" for 3 months. She was found to have splenomegaly. Hb 8g, MCV 107fl, WBC 3.6, plt 95k, retics 0.6%.LDH350 BM: ringed sideroblasts, blasts 8%. Cytogenetics by FISH 11 q del.

What are MDS?

- MDS: a spectrum of heterogeneous malignant ۲ hematopoietic stem cell disorders characterized by ineffective and dysplastic changes in BM with
 - ineffective haemopoiesis- dysmorphic cells in blood
 - Variable cytopenia- frequent progression to aml
- MDS may occur

a-de novo: primary MDS b-as a result of haemopoietic stem cell injury: secondary or treatment-related MDS MDS is associated with significant morbidity and mortality uue to

* Con represent as de novo (no predisposing factors)

- impaired quality of life

risk of transformation to AML

Epidemiology of MDS

- Epidemiology of MDS
 - common bone marrow disorder
 - the overall incidence is approximately 5 per 100,000 in the general population
 - peak incidence occurs at 60–90 years of age
 > 20 per 100,000 at 70 years of age
- Typical MDS patient
 - -elderly
 - -slight male preponderance
 - approximately 50% have a cytogenetic abnormality

Age-related Incidence of MDS Leukaemia Research Fund [1984-1993]

McNally RJQ et al. *Hematological Oncology* 1997. 15:173-189, Cartwright RA,et al. Leukaemia Research Fund, 1997. http://www.lrf.org.uk Reprinted with Permission of Leukemia Research Fund

Pathogenesis

Poorly understood Clonal process, thought to arise from single hematopoietic progenitor cell that acquired multiple mutations

Global hypomethylation with concomitant

hypermethylation of gene-promoter regions.

Mutation in genes that encode enzymes, such as TET2, IDH1, IDH2

As role for immunosuppressive agents, suggest immune system implicated in myelosuppression and/or marrow hypocellularity

Clinical features in MDS

- Anaemia
 - > 80% of patients with MDS are anaemic at diagnosis
 - Granulocytopenia + leulcopenia + thrombo appenia
 - 50-70% of patients
 - predisposition for infections
- Thrombocytopenia in 30% of patients
- In MDS
 - chronically low Hb levels associated with cardiac remodelling and increased incidence of heart failure

Subtypes of MDS: WHO classification # Just loss that

51		Putton2-ncco	
Disease	Blood findings	Bone marrow findings	
Refractory anaemia (RA)	Anaemia No or rare blasts < 1 × 10º/L monocytes	Bone marrow findings Erythroid dysplasia only < 10% grans or megas dysplastic < 5% blasts, < 15% ringed sideroblasts	
Refractory anaemia with ringed sideroblasts (RARS)	Anaemia No blasts	Erythroid dysplasia only < 10% grans or megas dysplastic ≥ 15% ringed sideroblasts, < 5% blasts	
Refractory cytopenia with nultilineage dysplasia (RCMD)	Cytopenias (bicytopenia or pancytopenia) No or rare blasts No Auer rods, < 1 × 10º/L monocytes	Dysplasia in ≥ 10% of cells in two or more myeloid cell lines < 5% blasts in marrow, no Auer rods, < 15% ringed sideroblasts	
Refractory cytopenia with nultilineage dysplasia and inged sideroblasts (RCMD-RS)	Cytopenias (bicytopenia or pancytopenia) No or rare blasts No Auer rods, < 1 × 10 ⁹ /L monocytes	Dysplasia in ≥ 10% of cells in two or more myeloid cell lines ≥ 15% ringed sideroblasts, < 5% blasts, no Auer rods	
Refractory anaemia with excess blasts-1 (RAEB-1)	Cytopenias < 5% blasts No Auer rods, < 1 × 10º/L monocytes	Unilineage or multilineage dysplasia 5–9% blasts, no Auer rods	
efractory anaemia with xcess blasts-2 (RAEB-2)	Cytopenias 5–19% blasts Auer rods ±, < 1 × 10º/L monocytes	Unilineage or multilineage dysplasia 10–19% blasts, Auer rods ±	
lyelodysplastic syndrome, Inclassified (MDS-U)	Cytopenias No or rare blasts, no Auer rods	Unilineage gran or mega dysplasia < 5% blasts, no Auer rods	
IDS associated with isolated lel(5q)	Anaemia < 5% blasts Platelets normal or increased	Normal to increased megakaryocytes with hypolobulated nuclei < 5% blasts, no Auer rods, isolated del(5q)	

Frequencies of the most common cytogenetic anomalies in patients with MDS

Haase D, et al. Blood. 2007;110:4385-95.

Many mutations are very rare

* Rehachy anemia or rehachy anemia with ringed sides blast with a mathematical with good kanotype -> score = 0 WHO classification-based Prognostic Scoring System (WPSS)

Variable	0	1	2	3
WHO category	RA, RARS, isolation 5q-	RCMD, RCMD-RS	RAEB-1	RAEB-2
Karyotype*	Good	Intermediate	Poor	_
Transfusion requirement	No	Regular	_	-

*Karyotype: **good**: normal, -Y, del(5q), del(20q); **poor**: complex (≥ 3 abnormalities), chr 7 anomalies; and intermediate: other abnormalities.

	Score	WPSS subgroup	Median survival (months) Italian cohort	Median survival (months) German cohort
worse rognessis	0	Very low	103	141
	1	Low	72	66
	2	Intermediate	40	48
J. S.	<mark>3–</mark> 4	High	21	26
	<mark>5-6</mark>	Very high	12	9

Malcovati L, et al. J Clin Oncol. 2007;25:3503-10.

Case 2 C

WPSS

- WHO category =2
- Cytogenetics intermed. = 1
- Bld Trx = 0

Total score 3. ms 21-26 months

MDS: therapeutic options

Prognostic group MDS risk

- "Best supportive care", including iron chelation
- Haemopoietic growth factors
- Immunosuppressive treatment
- Differentation induction
- Immunomodulatory drugs
- Arsenic trioxide
- Low-dose chemotherapy
- Epigenetic treatment
- Intensive chemotherapy
- Allogeneic SCT offer conditioning them with demotherapy to give a space for the donor stem cells

proposed general treatment algorithm

Treatments can be complicated by advanced age, comorbidities, chronicity of the disease.

Garcia-Manero, G. Am J Hematol. 2012.

From Silverman. In: Holland et al, eds. Cancer Medicine. 7th ed. BC Decker; 2006, .