SEIZURES

YACOUB BAHOU MD Professor in neurology at the University of Jordan

1. Introduction

- 2.Classification:focal seizures, generalized seizures
- 3. Epidemiology and etiologies
- 4. Clinical manifestations
- 5. Diagnostic evaluation
- 6. Treatment
- 7. Status epilepticus
- 8. Special topics

1. Introduction

Seizures are among the most common problems in neurology

Up to <u>10</u>% of the <u>population</u> will have <u>a seizure</u> at some time in their lives

In addition, seizures can be among the <u>most dramatic forms</u> of nervous system dysfunction

Although seizures have many different causes and manifestations, by definition a <u>seizure</u> is an <u>abnormal hypersynchronous electrical</u> <u>discharge</u> of <u>neurons</u> in the <u>brain</u>, producing a clinical dysfunction

<u>Epilepsy</u> is defined as a condition in which there is a tendency to have <u>recurrent unprovoked seizures</u>

Practically the <u>diagnosis</u> of <u>epilepsy</u> is often applied after a patient has had <u>two unprovoked seizures</u>

Seizures can arise from one specific focus within the brain(<u>focal</u>) or involve both cerebral hemispheres at the onset (<u>generalized</u>)

The <u>diagnosis</u> and <u>categorization</u> of the seizure is based primarily on the <u>semiology</u>(i.e., <u>signs</u> or <u>symptoms</u>) characterizing the event

Those that <u>arise</u> from <u>one portion</u> of the brain can evolve and <u>spread</u> to involve the <u>whole brain(secondarily generalized</u>)

Among <u>focal</u> seizures, those in which <u>awareness</u> is <u>impaired</u> are termed " with impaired awareness" (<u>previously complex partial</u> <u>seizures</u>), whereas those in which <u>awareness</u> is <u>preserved</u> are termed

"aware" (previously simple partial seizures) (table)

TABLE 1	5-1. Types of Seizures
e Focal-on	set:
Motor	Myoclonic (jerking) Epilepsia partialis continua (sustained rhythmic jerking) Clonic (rhythmic movements) Tonic (stiffening) Hypermotor (e.g., running) Focal-onset with secondary generalization (generalized con
Non-moto	Focal-onset with impaired awareness (old "complex partial") Sensory, e.g., olfactory, somatosensory, or hemianopic Focal-onset with altered cognition, e.g., aphasic, amnestic, 'psychic' / 'emotional' (e.g., altered mood, rage)
Generalized	-onset:
Motor	Generalized, tonic (then) clonic, convulsion ('grand mal') Myoclonic Tonic Atonic (lack of tone, with falls)
Non-motor:	Absence Other primary absence-like seizures, eyelid myoclonia Myoclonic—absence Generalized nonconvulsive seizures in comatose or ICU patients

* FOCAL SEIZURES

By definition, <u>focal seizures</u>(previously termed " partial") begin in a <u>focal area</u> of the <u>brain</u> and do not impair awareness, at least at the onset(figure)

In general, such seizures lead to <u>positive</u> rather than negative <u>neurologic</u> <u>symptoms</u>(e.g., tingling rather than numbness, visual hallucinations rather than blindness)

The <u>manifestations</u> of focal seizures depend on their <u>site</u> of <u>origin</u> in the <u>brain</u>.

These are designated as <u>motor</u> or <u>nonmotor</u>

<u>Focal motor seizures</u>, in which one part of the body may stiffen or jerk rhythmically, involve the motor cortex in the <u>frontal</u> lobe

The classic <u>Jacksonian march</u> occurs when the <u>electrical activity spread</u> along the <u>motor strip</u>, leading to rhythmic jerking that spreads along body parts following the organization of the <u>motor homunculus</u>

Consciousness is not impaired, can involve senses (flashing lights or a change in taste or speech) or motor function (uncontrolled stiffening or jerking in one part of the body such as the finger, mouth, hand, or foot), nausea, déjà vu feeling.

Complex

Consciousness is impaired and variable (unconscious repetitive actions), staring gaze, hallucination/delusion.

Focal evolving to generalized

Begins as focal seizure and becomes generalized.

Absence

B

Involve a loss of consciousness with vacant stare or unresponsiveness.

Myoclonic

Involve sudden, forceful contractions of single or multiple groups of muscles.

Clonic

Longer rhythmic jerking activity.

Tonic-clonic

Include alternate contraction (tonic phase) and relaxation (clonic phase) of muscles, a loss of consciousness, and abnormal behavior.

Atonic

Loss of muscle tone; person suddenly drops.

RGURE 15-1. Characteristics of seizure types. (A) Focal-onset seizures. (B) Generalized seizures. (Reprinted with remission from Ford SM. Roach's Introductory Clinical Pharmacology. 11th ed. Philadelphia, PA: Lippincott Mams & Wilkins; 2017. Figure 29.1.)

<u>Focal nonmotor</u> seizures from other regions of the brain can cause <u>sensory</u> phenomena(sometimes <u>parietal</u>), <u>visual</u> phenomena(usually <u>occipital</u>), or <u>gustatory</u>, <u>olfactory</u>, and <u>psychic</u> phenomena(frequently <u>temporal</u>)

The latter may include <u>déjà</u> <u>vu</u>, <u>jamais</u> <u>vu</u>, or sensations of <u>depersonalization</u> ('out of body") or <u>derealization</u>

Focal seizures with impaired awareness

Focal seizures with impaired awareness(<u>previously</u> termed <u>complex</u> <u>partial seizures</u>) have a focal onset and involve impairment of awareness

Many arise in the <u>temporal</u> lobe, but a <u>frontal</u> lobe focus is also common

Focal seizures with impaired awareness may include <u>automatisms</u>

(stereotyped motor actions without clear purpose) such as lipsmacking, chewing movements, or picking at clothing

The patient may have <u>speech</u> <u>arrest</u> or may <u>speak</u> in a <u>nonsensical</u> <u>manner</u>

By definition, the patient <u>does</u> not <u>respond</u> <u>normally</u> to the environment or to questions or commands

Occasionally, patients may <u>continue</u> the <u>activities</u> they were participitating in at the onset of the seizure, sometimes to remarkable lengths

Patients may <u>continue</u> <u>folding</u> <u>laundry</u> during a seizure or even <u>finish</u> <u>driving</u> <u>home</u>

<u>Focal seizures</u> with <u>impaired awareness</u> of <u>frontal lobe origin</u> may involve <u>strange bilateral movements</u>, such as bicycling or kicking, or behavior such as running in circles

If the patient's awareness is not known, the seizure is termed a focal seizure with unknown awareness

The <u>last classification</u> of <u>focal seizures</u> is termed <u>focal</u> to bilateral <u>tonic-</u> <u>clonic</u>

This term refers to the pattern of <u>seizure propagation</u> from one type of focal seizure to bilateral symptoms

Focal to bilateral tonic-clonic was <u>previously</u> termed <u>partial</u> <u>onset</u> with <u>secondary generalization</u>

* <u>GENERALIZED</u> <u>SEIZURES</u>

Generalized seizures include 2 categories: motor seizures and absence seizures (previous figure)

A) Generalized motor seizures

Generalized motor seizures were <u>previously</u> referred to as <u>generalized</u> <u>tonic-clonic</u> (<u>GTC</u>) seizures or <u>grand</u> <u>mal</u> <u>seizures</u>

This is the seizure type with which the <u>lay public</u> is most <u>familiar</u>

They typically begin with a <u>tonic phase</u>, lasting several seconds, in which the entire body becomes stiff(including the <u>chest</u> and <u>pharyngeal muscles</u>, sometimes leading to a <u>vocalization</u> known as the <u>epileptic cry</u>)

This is followed by the <u>clonic phase</u>, in which the limbs jerk rhythmically, more or less symmetrically, typically for less than 1 to 2 minutes

Toward the <u>end</u> of the <u>clonic</u> phase, the frequency of the jerking may decrease and stop as the body becomes <u>flaccid</u>

The patient may <u>bite</u> the <u>tongue</u> and become <u>incontinent</u> of urine during a generalized motor seizure

There is typically a <u>postictal state</u> after the seizure, lasting <u>minutes</u> to <u>hours</u>, during which the patient may be <u>tired</u> or <u>confused</u>, before returning to normal activity slowly

B) <u>ABSENCE SEIZURES (PETIT MAL ABSENCE</u>)

An absence seizure is a generalized seizure that most commonly occurs in <u>children</u> or <u>adolescents</u> and is characterized primarily by an <u>unresponsive</u> period, often with <u>staring</u>, that lasts for several <u>seconds</u>, with <u>immediate</u> <u>recovery</u> thereafter

Absence seizures can occur <u>tens</u> or even <u>hundreds</u> of <u>times</u> a <u>day</u> and may be noticed first by <u>schoolteachers</u> and assumed to be <u>daydreaming</u> or <u>difficulty concentrating</u>

A classic <u>3</u> –<u>per-second generalized spike</u> –<u>and-wave</u> electroencephalogram (<u>EEG</u>) <u>pattern</u> accompanies absence seizures

(figure). <u>Hyperventilation</u> is a common trigger

is followed by the mm A m m w N Start of seizure activity

C) <u>Juvenile myoclonic epilepsy (Janz syndrome)</u>

This is increasingly recognized as a <u>common</u> form of <u>primary</u> <u>generalized</u> <u>epilepsy</u>

Age of onset is typically in the teens

Patients have the <u>clinical triad</u> of:

- infrequent generalized seizures, often on waking
- daytime absences

- sudden, shock-like, involuntary jerking movements (<u>myoclonus</u>), usually in the <u>morning</u>. Patients may therefore, apparently inexplicably spill their breakfast or throw it across the room ("<u>Kellog's epilepsy</u>") The <u>EEG</u> shows polyspike-wave discharges and photosensitivity

<u>Treatment</u> with <u>sodium valproate</u> is often successful , but <u>recurrence</u> is <u>likely</u> if medication is stopped

<u>Alternative</u> drugs include clonazepam, levetiracetam and lamotrigine

This benign condition must be distinguished <u>from childhood conditions</u> where severe myoclonus and epilepsy are associated with underlying <u>degenerative disease</u> of the <u>brain(progressive myoclonic epilepsies</u>)

<u>Recognition</u> of juvenile myoclonic epilepsy is <u>important</u>, as patients treated incorrectly with <u>carbamazepine</u> than valproate, may <u>worsen</u>

<u>Less common</u> <u>seizure types</u> include myoclonic-atonic, clonic-tonic clonic, myoclonic absence, and absence with eyelid myoclonia, all of which are <u>generalized</u> in onset(table)

Seizures that are <u>myoclonic</u> (without other features) may be generalized or focal

BLE 15 cal-onse	-1. Types of Seizures
LORSE	
cal-ouse	
otor	Myoclonic (jerking) Epilepsia partialis continua (sustained rhythmic jerking) Clonic (rhythmic movements) Tonic (stiffening) Hypermotor (e.g., running) Focal-onset with secondary generalization (generalized con
-motor	(old "complex partial") Sensory, e.g., olfactory, somatosensory, or hemianopic Focal-onset with altered cognition, e.g., aphasic, amnestic, 'psychic' / 'emotional' (e.g., altered mood, rage)
	Generalized, tonic (then) clonic, convulsion ('grand mal') Myoclonic Tonic Atonic (lack of tone, with falls)
otor:	Absence Other primary absence-like seizures, eyelid myoclonia Myoclonic—absence Seneralized nonconvulsive seizures in omatose or ICU patients
	otor:

3. Epidemiology and etiologies

Seizures have a <u>U-shaped distribution</u> in <u>age</u> of <u>onset</u> – they are more common in the <u>very young</u> and the <u>very old</u>

<u>Etiologies</u> vary depending on the <u>age</u> of <u>onset</u>

In <u>infants</u>, a variety of neonatal infections, hypoxic-ischemic insults, genetic syndromes, and congenital brain malformations are common causes of seizures

They are the <u>most common cause</u> of seizures in <u>children</u>, affecting up to 3% to 9% of this age group

They occur <u>between 6 months</u> and <u>5 years</u> of age in the setting of a <u>febrile illness</u> without evidence of intracranial infection and are <u>usually</u> <u>generalized</u> in onset

Most children with febrile seizures <u>do not have neurologic deficit</u>

For the event to be <u>considered</u> a <u>febrile seizure</u>, the <u>fever</u> may be present <u>before</u> the <u>seizure</u> or must develop in the <u>immediate postictal</u> <u>period</u>

The <u>risk</u> of <u>subsequent</u> <u>epilepsy</u> is relatively <u>small</u> <u>unless</u> the seizures are <u>prolonged</u> or <u>focal</u> in onset or if <u>other neurologic</u> <u>abnormalities</u> <u>or</u> a <u>family</u> <u>history</u> of <u>epilepsy</u> is present <u>Older children</u> may also develop seizures related to head injury, meningitis, encephalitis, or vascular diseases, and <u>genetic syndromes</u> continue to be a significant etiology at this age group

Among young adults, head injury, substance use, and excessive alcohol use are common causes of new-onset seizures, but <u>brain tumors</u> and <u>strokes</u> become more common etiologies by <u>middle age</u>

In the <u>elderly</u>, <u>strokes</u> become the most common etiology, but substance abuse and alcohol are not uncommon causes

<u>Metabolic disturbances</u> from <u>systemic problems</u> such as severe hypo-or hyperglycemia, hepatic failure, or renal failure are also frequent causes

Frequently, seizures occur in <u>children(</u> and sometimes adults) as part of a <u>syndrome</u> that may include specific seizure types, EEG patterns, and associated neurologic abnormalities

Many of these are called "<u>idiopathic generalized epilepsies</u>"-usually considered to be <u>genetic conditions</u> in almost all cases

The diagnosis of a <u>specific syndrome</u> may have implications both for <u>genetic</u> testing and for the <u>proper</u> choice of <u>pharmacologic</u> treatments

Examples are outlined in the table

the one		- Features and Treatr	nent	Same of the Apple of the State	
TABLE 15-2 .	Epilepsy Syndromes	: Features and Treatr Selected Epil	Associated Findings	EEG Findings	Commonly Used Treatments
Lennox- Gastaut syndrome	Age of Onset Childhood	Seizure Types Tonic, atonic, myoclonic, generalized tonic-clonic, absence	Major cognitive impairment and disability	Slow (1- to 2-per-second) spike-and-wave discharges	Valproic acid, lamotrigine, felbamate, rufinamide, clobazam
Focal motor seizure, e.g., benign rolandic epilepsy	Childhood	Simple partial seizure involving the mouth and face, infrequent generalized tonic-clonic	Nocturnal preponderance of seizures	Centrotemporal spikes	Carbamazepine sometimes no treatment necessary
Absence epilepsy	Childhood and adolescence	Absence; sometimes, generalized tonic–clonic seizures	Hyperventilation as trigger	3-per-second generalized spike-and-wave	Ethosuximide valproic acid lamotrigine
Juvenile myoclonic epilepsy EEG, electroencephalog	Adolescence and young adulthood	Myoclonic, absence, generalized tonic–clonic	Early morning preponderance of seizures	4- to 6-per- second polyspike-and- wave	Valproic aci lamotrigine levetiraceta

4. CLINICAL MANIFESTATIONS

A) <u>History</u>

The <u>diagnosis</u> of seizures is a <u>clinical</u> one

Most commonly the <u>patient</u> is <u>seen after</u> an <u>event</u> has occurred, and the diagnosis must be made on the history alone

In these cases, the <u>patient</u> (and more importantly, <u>witnesses</u>, if the seizure was generalized in onset) must be <u>questioned</u> for an exact description of the <u>event</u> itself(and especially the onset), any <u>premonitory</u> symptoms, and the character of the <u>recovery period</u> in order for the clinician to decide whether the event was a seizure

and, if so, what type of seizure it was

The <u>clinical</u> details should allow <u>differentiation</u> of seizures <u>from</u> <u>other</u> <u>paroxysmal</u> <u>neurologic</u> <u>events</u> (table)

		Environment Neurologic Events		
	eracteristics of Focal Seizures	s and Other Paroxysman Near on s	Migraine	
TABLE 15-3. CI	Focal Seizures	and Other Paroxysmal Neurologic Events Translent Ischemic Attacks Sudden onset of symptoms	Progression of symptoms over 15–20 min	
Onset	Progression of symptoms over seconds	Negative motor, sensory, or visual	Positive sensory and, especially, visual symptoms such as scintillating scotomata	
Maurologic	Positive motor or sensory symptoms; "psychic"	Negative motor, senser, symptoms (loss of function)		
symptoms	symptoms such as déjà vu	Usually less than 30 min, always less	Symptoms for 15-20	
Duration	Usually less than a few minutes	than 24 h	headache for hours	
			Preserved	
Consciousness Headache	Preserved or impaired	Preserved	Throbbing pain, often unilateral, following the	
	Occasionally postictal	Infrequent	unilateral, ionomia progression of initial symptoms	
			Fatigue common	
Recovery	Postictal confusion, sleepiness	Rapid		
Risk factors	Structural brain lesion, family history of seizures	Hypertension, hyperlipidemia, smoking, diabetes, atrial fibrillation stenotic intracranial or extracranial		
		vessels, hypercoagulability		

The <u>neurologic</u> <u>examination</u> is most <u>helpful</u> diagnostically in the

(relatively uncommon) instances in which the patient is observed during the event or shortly thereafter

In the latter case, a <u>postictal hemiparesis</u>, or <u>Todd's paralysis</u>, may be detected after a bilateral tonic, then clonic seizure; this suggests that the <u>seizure was</u> of <u>focal onset</u>, even if not apparent to observers at that time

<u>Other abnormalities</u> on neurologic examination may also suggest the presence of a <u>focal brain lesion</u>

Of course, the <u>general physical exam</u> may yield findings suggestive of infection or other systemic disease that might explain a new-onset seizure

In particular, <u>signs</u> of <u>meningitis</u> should be sought in any patient who has had a seizure

5. <u>Diagnostic</u> evaluation

A) <u>Laboratory studies</u>

Laboratory testing may show an underlying metabolic abnormality, such as hyponatremia or hypocalcemia, that explains new-onset seizure

After a <u>generalized</u> <u>seizure</u>, there is commonly a <u>lactic</u> <u>acidosis</u>, resulting in decreased serum bicarbonate

A <u>toxicology screen</u> for common <u>substances</u> of <u>abuse</u>, as well as an <u>alcohol</u> level, should be done in all patients

Female patients of <u>reproductive</u> age should also have a <u>pregnancy test</u>

In cases where infection is suspected, a lumbar puncture should be performed

B) Brain imaging

An <u>uncomplicated seizure</u> in a patient with <u>known</u> <u>epilepsy</u> does <u>not</u> generally <u>warrant</u> <u>brain</u> <u>imaging</u>

With <u>rare</u> exceptions, however, <u>neuroimaging</u> should be performed in patients with <u>new-onset</u> <u>seizures</u>

For seizures of probable <u>focal onset</u>, a magnetic resonance imaging (<u>MRI</u>) is a necessary part of the diagnostic workup, to look for a <u>structural abnormality</u> that is the focus for that seizure

A <u>CT</u> <u>Brain</u> scan may suffice in the <u>urgent</u> setting

C) <u>Electroencephalography(EEG</u>) An <u>EEG</u> may be <u>useful</u> for <u>several reasons</u>:

- It may identify a potential <u>focus</u> of seizure onset

- It may show abnormalities characteristic of a <u>specific epilepsy</u> <u>syndrome(e.g., with rapid, narrow, generalized spike and polyspike</u> discharges in a patient with " <u>primary generalized epilepsy</u>")

 - and it may establish whether a patient who has had a <u>seizure</u> and is <u>not regaining alertness</u> promptly is postictal or is having ongoing continuous nonconvulsive seizures
The <u>diagnosis</u> of whether a particular <u>paroxysmal</u> <u>event</u> was a seizure or not, however, rests primarily on <u>clinical</u> grounds

In patients with known epilepsy, up to 50% of routine EEGs are normal

6. TREATMENT

A) <u>Drugs</u>

The mainstay of epilepsy treatment is pharmacologic

The <u>number</u> of available <u>antiseizure</u> <u>drugs</u> (ASD) has more than <u>doubled</u> in recent years, and there is now a <u>large selection</u> of <u>agents</u> from which to choose, each with its own set of <u>indications</u> and possible <u>adverse effects</u> (table)

logic. The final (ASDs) has more	than dots	Seizure Types	Characteristic Side Effects	
4	ected Antiseizure Drugs Site of Action Na ⁺ channel	Treated ^a Focal ^a	Gingival hyperplasia, coarsening of facial features, ataxia	
Phenytoin (Dilanti		Focal	Hyponatremia, diplopia	
Carbamazepine (Tegretol) Valproic acid (Depakote)	Na ⁺ channel Na ⁺ channel, GABA receptor	Focal, generalized	GI symptoms, tremor, weight gain, hair loss, hepatotoxicity, thrombocytopenia, teratogenicity	
		Focal, generalized	Sedation	
Phenobarbital Ethosuximide	GABA receptor T-type Ca ²⁺ channel	Absence	GI symptoms	
(Zarontin) Gabapentin	Unknown, possibly voltage-gated Ca ²⁺ channel	Focal	Sedation, weight gain (occasional)	
(Neurontin) Lamotrigine (Lamictal)	Na ⁺ channel, glutamate receptor	Focal, generalized	Diplopia, rash (rare Stevens- Johnson syndrome; more with rapid introduction)	
Topiramate (Topamax) Na ⁺ channel, GABA activity	Focal, generalized	Word-finding difficulty, renal stones, weight loss	
Tiagabine (Gabitril)	GABA reuptake	Focal	Sedation	
Levetiracetam (Keppra)	Poorly understood (synaptic vesicle modulation of neurotransmitter effects)	Focal, generalized	Insomnia, anxiety, irritability	
Oxcarbazepine (Trileptal)	Na* channel	Focal	Sedation, diplopia,	
Zonisamide (Zonegran)	Unknown; probably multiple mechanisms	Focal, generalized	hyponatremia	
Lacosamide (Vimpat)		generalized	Sedation, renal stones, weight	
Pregabalin (r	Na ⁺ channel	Focal	loss	
Clobazam (Onfi)	Voltage-gated Ca ²⁺ channel Benzodiazepine receptor	Focal	Sedation, headache, syncope Sedation, peripheral edema,	
^a Drugs effective for focal seizu GABA, gamma-aminobutyric		Generalized	weight gain Sedation, mood symptoms, fever	

<u>An ASD</u> is typically <u>not started</u> after a <u>single seizure</u> unless there is a reason to believe that a 2nd seizure is likely

This applies especially to <u>symptomatic seizures</u> i.e.,those due to a <u>treatable</u> or <u>reversible</u> <u>condition</u>, such as meningitis, alcohol withdrawal, or hyponatremia

Most neurologists would <u>not start</u> an ASD after a <u>single seizure</u> for which <u>no</u> underlying <u>cause</u> is found

<u>ASD treatment</u> is usually <u>begun</u> after <u>2</u> <u>seizures</u> that are not provoked

The primary <u>goals</u> of ASD treatment are to eliminate <u>seizures</u> and <u>avoid</u> <u>side effects</u>, ideally with <u>monotherapy-</u> i.e., using a single drug

Most neurologists <u>increase</u> the dose of a single <u>drug until</u> either seizure <u>control</u> is achieved or <u>adverse</u> <u>effects</u> become intolerable

If the latter occurs, the dose is lowered and a 2nd drug may be added

If seizure <u>control</u> is <u>achieved</u>, an attempt is often made to <u>taper</u> the <u>1st</u> <u>drug</u>, leaving the second as monotherapy

For about <u>70%</u> of <u>epilepsy patients</u>, seizures will be <u>well controlled on</u> <u>ASDs</u>, often with the 1st drugs tried

For the <u>remainder</u>, <u>2</u> or <u>more</u> <u>ASDs</u> may be required, or the seizures remain <u>refractory</u> to <u>medical</u> <u>therapy</u>

The ketogenic diet is a <u>high-fat</u>, <u>high-protein</u>, <u>low-carbohydrate</u> diet often considered for treatment of patients with epilepsy

It <u>produces</u> <u>urine</u> and <u>plasma</u> <u>ketones</u>, which are used for monitoring therapy

It can be effective in <u>reducing</u> the <u>seizure</u> <u>frequency</u> in both <u>adult</u> and <u>pediatric</u> patients

There are several <u>epilepsy syndromes</u>, mostly <u>pediatric</u>, for which there is good evidence of efficacy of the ketogenic diet

It can be <u>difficult</u> for patients to <u>tolerate</u> and is <u>not</u> known to be <u>safe</u> for other medical comorbidities, including <u>lipid</u> <u>disorders</u>

C) <u>Vagus</u> nerve stimulation

The vagus nerve stimulator is a device shown to be effective in the <u>treatment</u> of <u>partial</u> and <u>generalized</u> <u>seizures</u>

It is <u>implanted subcutaneously</u> below the clavicle and <u>stimulates</u> the <u>left vagus</u> <u>nerve</u> through programmed electrical impulses delivered through leads placed in the neck

Various devices for <u>direct brain stimulation</u> including <u>transcutaneous</u> <u>magnetic stimulation</u> and <u>deep brain stimulation</u> also have promise for epilepsy treatment in the future, but they are still under development

D) Surgery

Patients <u>refractory</u> to <u>medical</u> <u>management</u> may be candidates for epilepsy surgery

Exactly <u>what constitutes</u> being <u>medically</u> <u>refractory</u> will depend on an individual patient's characteristics

<u>Contributing factors</u> typically <u>include</u> seizure type and frequency, tolerance of ASD therapy, number of ASDs tried and the effect on the patient's quality of life The <u>most common surgical procedure</u> is resection of the <u>epileptogenic</u> <u>area</u>, typically following a presurgical evaluation in which <u>continuous</u> <u>video-EEG monitoring</u> combined with <u>neuroimaging</u> and other tests is used to <u>identify</u> the <u>focus</u> of seizure onset

For seizures of <u>medial temporal lobe origin</u>(the <u>most common target</u> of epilepsy surgery), the rate of complete <u>seizure freedom</u> following resective surgery can be <u>over 60%</u>

<u>Other less commonly used surgical procedures</u> include corpus callosotomy, hemispherectomy, or multiple subpial transection

7. <u>STATUS</u> EPILEPTICUS

Status epilepticus(SE) is an abnormal state in which either <u>seizure</u> is <u>continuous</u> for a <u>prolonged</u> <u>period</u> or <u>seizures</u> are so <u>frequent</u> that there is <u>no recovery</u> of <u>consciousness</u> between them

There are <u>several types</u> of SE, including the <u>generalised</u> convulsive form(ongoing clonic movements of the limbs) and <u>more subtle forms</u> in which the patient may be <u>unresponsive</u> and might have <u>subtle motor</u> signs such as <u>eyelid twitching</u> or <u>nystagmus</u> <u>Potential causes</u> of SE include acute metabolic disturbances, toxic or infectious insults, hypoxic-ischemic damage to the brain, and underlying epilepsy

<u>Morbidity</u> from SE can be <u>high</u>; <u>outcome</u> depends largely on etiology and duration

SE is a <u>medical emergency</u>, the management of which centers on <u>stopping</u> the <u>seizure activity</u> and <u>preventing</u> the occurrence of <u>systemic complications</u>(table)

A Course of the second second	THE STATE	Veurology			
130 · BLUE	PHINIT	Hente C	Monitoring		
TABLE 15-5. Ma Phases Stabilization	nagement o Timing 0–5 min	Status EpilepticusSteps• Airway• Breathing• Circulation• OxygenBlood glucose (finger stick)• Thiamine and D5W if glucose <60 mg/dL	• F • L • C t a	CG V access abs studies: CBC, chemistry, oxicology screen, ntiseizure drug evel, if known to be on treatment	
If seizures continu Initial treatment	1e: 5–20 min	Administer benzodiazepines. <i>One of the following:</i> • IM midazolam • IV lorazepam • IV diazepam			
If seizures continue	e:	in an drug			
Second treatment	20–40 min	Administer antiseizure drug. <i>One of the following:</i> • IV fosphenytoin • IV valproic acid • IV levetiracetam • IV lacosamide • IV phenobarbital			
If seizures continues					
Third treatment 4	0–60 min	Repeat treatments in second phase or sufficient continuous IV infusion of seizure-suppressing ("anesthetic") medications: midazolam, propofol, or pentobarbital (or thiopental)		Initiate continue EEG monitoring Admit to ICU If continuous IV infusion of sedating drugs is administered	

These steps to stabilize a patient i

patient requires intubation It is particularly important to consider the possibility of <u>ongoing</u> <u>nonconvulsive seizures</u> in patients whose convulsions have ceased but whose mental status has not improved, or in whom the <u>mental</u> <u>status</u> is disproportionately <u>impaired</u> to what is expected from other comorbidities

- It is also important to note that a cluster of <u>frequent seizures</u> may <u>warrant similarly aggressive management</u>, particularly because this condition may <u>evolve</u> to <u>SE</u> quickly
- There are <u>evidence-based guidelines</u> on how to approach adults and children in SE.These <u>guidelines</u> are <u>updated</u> on a regular basis as new ASDs and procedures become available

8. Special topics

A) First aid for seizures

All physicians <u>should</u> <u>be</u> <u>familiar</u> <u>with</u> <u>first</u> <u>aid</u> <u>measures</u> for patients having a seizure

In general, the goal is to prevent the patient from becoming injured

(and to prevent well-meaning bystanders from intervening unwisely)

The patient with <u>complex partial seizures</u> may wander or make semipurposeful movements; if necessary he or she should be gently guided out of harm's way

More <u>aggressive</u> <u>attempts</u> at restraint may provoke a <u>violent</u> <u>reaction</u>

The patient with <u>GTCs</u> should be <u>laid</u> on <u>his</u> or her <u>side</u>, if possible, so that vomiting does not lead to aspiration

<u>Tight clothing</u> should be <u>loosened</u>

Nothing should be placed in the mouth

<u>Most</u> GTCs stop within 1 or 2 minutes; immediate <u>medical</u> <u>attention</u> should be sought <u>if</u> a <u>seizure</u> becomes more <u>prolonged</u>

B) <u>Sudden</u> <u>unexpected</u> <u>death</u> in <u>epilepsy</u>

Sudden unexpected death in epilepsy(<u>SUDEP</u>) is a <u>rare</u> and <u>devastating</u> outcome from epilepsy

It is <u>defined</u> as a "sudden, unexpected death of a person with epilepsy who is otherwise healthy" (AAN Guideline)

SUDEP in <u>children</u> is <u>rare</u>, occurring in 1 every 4500 children with epilepsy

In <u>adults</u>, SUDEP is more <u>common</u>, resulting in the death of 1 in 1000 adults with epilepsy per year

<u>Risk factors</u> include the following:

- <u>GTCs</u>, especially with a <u>high frequency</u> of <u>GTCs</u>(effectively treating and reducing the frequency of seizures results in a decreased risk of SUDEP)

- Longer duration of the diagnosis of epilepsy
- <u>Age</u>: 18 to 40 years
- Alcohol use
- Missing ASD doses

Although this can be anxiety provoking to discuss, <u>patients</u> and <u>families</u> should be <u>counseled</u> about the <u>risk</u> of <u>SUDEP</u> and that <u>adherence to</u> <u>effective ASD treatment</u> probably decreases the risk

B) <u>Seizures</u> and <u>driving</u>

Each state in the USA has its own licensing requirements for people with epilepsy

Physicians who care for seizure patients should be aware of them

Most states require a <u>specific</u> <u>seizure-free</u> <u>interval</u> before a patient may drive

<u>Exceptions</u> can sometimes be made for <u>purely nocturnal seizures</u> or those with a <u>prolonged focal onset</u> that provides the patient with a warning without impaired awareness

A few states require physicians to <u>report</u> patients with <u>seizures</u> to the department of motor vehicles

All <u>patients</u> should be <u>counseled</u> about <u>driving</u> <u>restrictions</u>

C) <u>Antiseizure</u> <u>drugs</u> and <u>pregnancy</u>

<u>Women</u> taking <u>ASDs</u> have a somewhat higher <u>risk</u> of <u>fetal</u> <u>malformations</u> than does the general population, but the absolute risk is still low

<u>Valproic acid</u> has been specifically associated with a higher rate of <u>neural tube defects</u>

All <u>women</u> with <u>epilepsy</u> who are <u>considering</u> becoming <u>pregnant</u> should take <u>folic acid</u> (at least 1 mg per day)

It is reasonable to consider <u>modifying</u> the <u>ASD</u> regimen prior to <u>conception</u>, depending on the severity of a women's epilepsy, but the <u>risk</u> of <u>ASD-related</u> <u>teratogenicity</u> must be <u>balanced</u> with the <u>risk</u> of <u>seizures</u> <u>during</u> <u>pregnancy</u>

D) <u>Psychogenic nonepileptic seizures</u>

A reported <u>10%</u> to <u>30%</u> of <u>patients</u> evaluated at tertiary referral centers for <u>medically refractory epilepsy</u> actually have <u>events</u> that have <u>no EEG</u> <u>correlate</u> and are <u>psychogenic</u> in nature

These are referred to as <u>psychogenic</u> <u>nonepileptic</u> <u>seizures</u>

Some of these patients may have "<u>true</u>" epileptic <u>seizures</u> at <u>other</u> <u>times</u> Many patients with psychogenic events have <u>comorbid psychiatric</u> <u>illnesses</u> or a <u>history</u> of <u>abuse</u>

<u>Continuous video-EEG monitoring</u> to record the typical events is usually the most <u>reliable method</u> of <u>differentiating psychogenic events</u> from <u>epileptic seizures</u>