

INTRODUCTION

- Vascular lesions, including vascular neoplasms and vascular malformations, are common in newborns.
- Although the majority of these lesions are benign and self-limited conditions, some may be part of complex syndromes or systemic disorders or may be associated with complications.

CLASSIFICATION OF VASCULAR ANOMALIES

- Vascular anomalies were classified by Mulliken and Glowacki in 1982 into infantile haemangiomas and vascular malformations, based on clinical and histological characteristics.
- The International Society for the Study of Vascular Anomalies (ISSVA) modified the terms to tumours and malformations in 1996, and this simple structure is applicable to in excess of 90% of lesions

ISSVA 2014

The 2014 ISSVA classification for vascular anomalies

Vascular tumours

Benign

Infantile haemangioma Congenital haemangioma

- Rapidly involuting (RICH)

- Non-involuting (NICH)

Partially involuting (PICH)

Tufted angioma

Others Locally aggressive or borderline Kaposiform haemangioendothelioma Kaposi sarcoma Others Malignant Angiosarcoma Others Associated with other lesions PHACES syndrome^a Simple Slow Flow Capillary malformations (CM) Venous malformations (VM) Lymphatic malformations (LM) High Flow Arteriovenous malformations (AVM) Arteriovenous fistula (AVF)

Vascular anomalies

Vascular malformations

Combined Combined channel malformations e.g. CVM, CLM, LVM, CAVM Others

Associated with other anomalies (<5% of cases)

Klippel-Trenau	anay syndrome: CM + VM +/- LM + limb overgrowth
Parkes Weber	syndrome: CM + AVF + limb overgrowth G
Servelle-Marto	rell syndrome: limb VM + bone undergrowth
Sturge-Weber	syndrome: facial + leptomeningeal CM + eye anomalies
+/- bone and/o	or soft tissue overgrowth G
Limb CM + con	genital non-progressive limb hypertrophy
Maffucci syndr	ome: VM +/- spindle-cell hemangioma + enchondroma
Macrocephaly	- CM (M-CM / MCAP) G
Microcephaly -	CM (MICCAP) G
CLOVES syndro	ome: LM + VM + CM +/- AVM + lipomatous overgrowth G
Proteus syndro	ome: CM, VM and/or LM + asymmetrical somatic overgrowth G
Bannayan-Rile	y-Ruvalcaba sd: AVM + VM +macrocephaly, lipomatous overgrowth G

Of major named vessels Affect lymphatics, veins, arteries Anomalies of origin [course, number, length, diameter (aplasia, hypoplasia, stenosis, ectasia / aneurysm), valves] Communication (AVF) persistence (of embryonal vessel)

^a Posterior fossa malformations, Haemangioma, Arterial anomalies, Cardiovascular anomalies, Eye anomalies, Sternal clefting and/or Supraumbilical raphe.

Modified from Dasgupta & Fishman, 2014²

ISSVA 2014

ISSVA Classification for vascular anomalies

Vascular anomalies						
Vascular tumors	Vascular malformations					
	Simple	Combined *	of major named vessels	associated with other anomalies		
Benign Locally aggressive or borderline Malignant	Capillary malformations Lymphatic malformations Venous malformations Arteriovenous malformations* Arteriovenous fistula*	CVM, CLM LVM, CLVM CAVM* CLAVM* others	<u>See details</u>	<u>See list</u>		

' defined as two or more vascular malformations found in one lesion

* high-flow lesions

Vascular tumours

The majority of vascular tumours are benign and 95% are infantile haemangiomas.

- Benign (strawberry naevae)
- 10% of full term vs 20% of premature babies
- F:M 2:1
- Predilection for the head and neck
- Presentation

Stage 1:

- A rapid proliferating phase during the first 5-8 months of life is characterized by rapid, distressing and potentially disfiguring growth of the haemangioma.
- These are soft and warm, with a prominent Doppler signal.
- When situated on the skin surface they appear bright red (hence the term 'strawberry naevus')

Stage 2.

- A prolonged involuting phase lasts until the age of 7-9 years.
- During this phase the lesions initially become darker with a grey hue, slowly lose their color and have fine capillary telangiectasia.

Stage 3.

- A final involution phase is characterized by the presence of a soft lump that is visible in the case of superficial lesions and less so in deeper lesions.
- The lesion regresses by the age of 7 years in 70% of cases, and by 9 years in 90%.
- Histologically, the cellular parenchyma has been substituted almost completely with a fibro-fatty residue.

Features:

- Localized / diffused
- Histologically share features of placental tissue
- Expression of glucose transporter protein GLUT-1
- PHACE association

Management

Treatment is mostly expectant

Rarely biopsy

Management

Active intervention is necessary in the presence of complications such as:

- large size or disfigurement
- multiple lesions causing high-output cardiac failure
- obstruction of vital structures (vision, airway)
- persistent ulceration.

Treatment

- Propranolol :
 - 1st line
 - Cause vasoconstriction
 - 1-2mg/kg/day

Steroids

- Second line
- Intra-lesional – 2mg/kg every 4-6 weeks

Systemic therapy — Rebound growth!!

Embolization

Is useful in high-output cardiac failure and for treating troublesome, bleeding lesions.

Tracheostomy

Pulsed-dye laser

- There is no evidence that laser treatment alters the natural history of haemangioma.
- It is useful for surface residual telangiectasia (after the age of 10 years).
- It was used to help coagulate the surface of ulcerated lesions, but dressings are the principal form of wound care.

Kaposiform haemangioendotheliomas

- Locally aggressive
- Appear early infancy
- Presentation
 - Kasabach-Merritt phenomenon KMP

Treatment

– MTOR +ve : Sirolimus

Congenital haemangioma

As the name suggests these are fully developed at birth and three subtypes have been recognized so far.

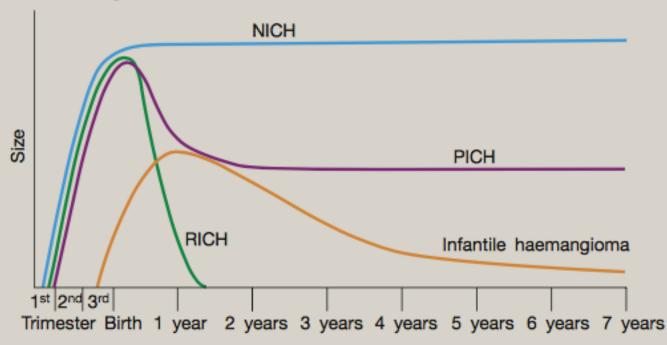
They are negative for GLUT-1.

Rapidly involuting congenital haemangiomas

- These are un- common entities that, unlike infantile haemangiomas exhibit a much faster involution with full regression by 1 year of age.
- They present as large masses, often on the legs. They are firmer than infantile haemangiomas, with or without telangiectatic changes. They leave a plaque-like residuum, which may regress further to leave an atrophic patch of skin

Non-involuting congenital haemangiomas

- These are rare tumours that mimic infantile haemangiomas and are of similar texture.
- They are present as round or oval masses, with flat shape or moderately bossed and accompanying telangiectasia, and may have a halo.
- They do not exhibit further growth and do not regress.
- Treatment is by surgical excision.


Partially involuting congenital haemangioma:

This is a recently described variant which looks like a NICH but slowly regresses by age 10

Congenital Haemangioma

A diagrammatic representation of growth patterns of the various types of haemangioma

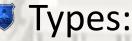
NICH, non-involuting congenital haemangioma; PICH, partially involuting congenital heamangioma; RICH, rapidly involuting congenital haemangioma

Adapted from Mulliken & Enjolras 2004

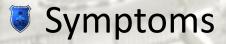
Pyogenic granuloma (PG)

lobular capillary hemangioma

- benign vascular tumor of the skin or mucous membranes characterized by rapid growth and friable surface.
- starts as a small red papule that grows rapidly over weeks to months and then stabilizes
- bleeds profusely after minor trauma and may become ulcerated. Bleeding is difficult to control and often recurrent.


Vascular malformations

Presentation


Regression

Endothelial cell mitotic rate

Vascular malformations

- Flow characteristics
- Vessel type:
 - capillary, venous, lymphatic and arterial components, or a combination

Capillary malformations

Port wine stain

0.3% of newborns

Presentation

Associated syndromes

2010 Logical Images, Inc

ure 6 A capillary malformation (port-wine stain) of the right side of face on a 19-year-old boy. Note the skeletal and soft tissue hyrtrophy of the affected area. He had two operations to reduce the s in early teenage and a further procedure is planned.

April 11.

- the colour deformity may cause psychological concern and impair normal social interaction.
 - In teenager and adults tissue hypertrophy may cause further concern.
- Management is a combination of supportive with involvement of a clinical psychologist, with camouflage and the use of pulse dye laser therapy.
 - Which can lighten the colour for a number of years.
 - Surgery may be useful for reducing hypertrophied areas
 - the lower lip.

Capillary malformations

Nevus simplex (macular stain) —

- (macular stain, salmon patch, stork bite, or angel kiss) presents as single or multiple blanchable, pink-red patches in newborn infants.
- These lesions occur in 40 to 60 % of infants, most commonly on the eyelid, glabella, and midline of the nape of the neck. Less common sites of involvement include the scalp, nose, lip, and back.
- Nevus simplex generally fades within one to two years, although lesions on the back of the neck may persist unchanged with little consequence

Venous malformations

- These low-flow lesions are blue, compressible soft tissue masses that empty on elevation. They can affect most tissues
- Presentation
 - Disfigurement
 - Pain
 - Coagulopathy
 - D-dimer/ fibrinogen

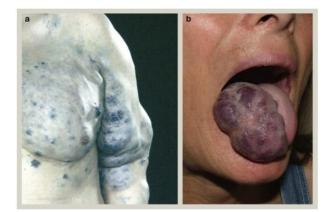
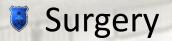


Figure 7 (a) In extensive venous malformations, as on the trunk of this man, there may be consumptive intravascular coagulopathy. (b) A woman with a venous malformation of the right side of the tongue, which had been treated once with sclerotherapy.

Venous malformations

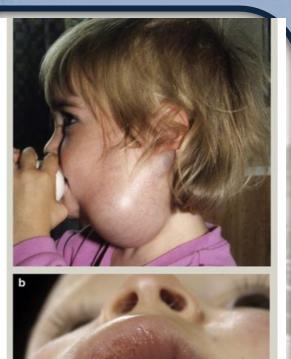
- 5% genetic abnormalities
 - Krit-1, TIE-2 and Glomulin genes
 - Blue rubber bleb syndrome

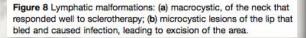


Management

Compression garments

Non-steroidal anti- inflammatory drugs NSAIDS


Sclerotherapy



Lymphatic malformations

Microcystic Microcystic

Macrocystic

Management

- Sclerotherapy – OK-432
- Surgery
 - Seroma
 - Infection

Arteriovenous malformations (AVM)

They are high-flow malformations that have a characteristic nidus with arterial feeders, arteriovenous fistulas and enlarged veins

presentation

AVM Schobinger classification

Schobinger clinical classification for arteriovenous malformations

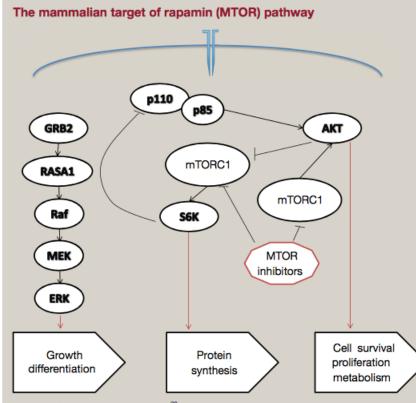
Stage

Description

I (Quiescence) Pink/blue stain, warmth, and arteriovascular shunting
 II (Expansion) Stage I plus enlargement, pulsations, thrills and bruit
 III (Destruction) Stage II plus either dystrophic skin changes, ulceration, bleeding, pain or tissue necrosis
 IV (Decompensation) Stage III plus high-output cardiac failure

Adapted from Schobinger, Hansen, Probaz et al., 1998

Management:


- the symptomatic stages (III and IV) may warrant treatment with a combination of interventional radiology, excisional surgery and reconstruction. Some lesions can be controlled with repeated embolization.
- Embolic agents include
 - ethanol, cyanoacrylate (glue), coils, polyvinyl particles and onyx, a liquid ethylene vinyl alcohol copolymer.

Combined lesions

- There are several patients with vascular malformations where lesions have a mixed vessel type.
- These lesions occur either isolated or associated with overgrowth disorders such as Klippel- Trenaunay and Proteus syndrome.
- Patients often have significant morbidity with heavy, painful areas especially when involving a limb.
- They are also troubled by episodes of infection and wound breakdown.
 These patients require life-long care.

Molecular mechanisms

The mammalian target of rapamin (MTOR) pathway22 is an intra- cellular signalling pathway which results in cell growth and survival

Adapted from Dienstmann, 2014.23

Figure 10 The mammalian target of rapamin (MTOR) pathway Adapted from Dienstmann, 2014.22

Conclusion

