Drug Use During Lactation

Yacoub M. Irshaid, MD, PhD, ABCP
Pharmacology

- Breast milk is the best form of nutrition for young infants.
- Mothers should breast feed exclusively for 6 months, and continue until at least 12 months while other foods are introduced.
- Breast milk provides all the energy and nutrients required for the first 6 months of life.

Breast feeding provides:

- 1) Protection of the infant against gastric, respiratory, and urinary tract infections.
- 2) Reduction in the rate of obesity, and juvenileonset diabetes mellitus.
- 3) Reduction in the rate of atopic diseases.
- Adults who were breastfed as infants have lower blood pressure and lower cholesterol levels.

Maternal benefits of beast feeding include:

- Reduced risk of developing pre-menopausal breast cancer
- 2. Strengthening of the mother-infant bond.

- Breastfeeding mothers frequently require treatment with drugs.
- There are few contraindications to breast feeding.
- Some mothers may self-medicate with over-thecounter medications, nutritional supplements and herbal medicines.

 Nursing mothers need advice about safe drug use during lactation to protect the infant from drug-related adverse effects, and to allow necessary maternal treatment.

- Most drugs pass to breast milk to some extent, but breastfeeding may be continued in most cases.
- The drug dose ingested by the infant via breast milk only rarely cause adverse effects.
- Almost all drugs enter milk by passive diffusion of un-ionized, protein un-bound drug through the lipid membrane of the alveolar cells of the breast.

- Factors affecting rate and extent of passive diffusion include maternal plasma drug level, physiological differences between plasma and milk, and physicochemical properties of the drug.
- Milk differs from blood in having lower pH (ranges from 6.8 – 7.0 vs 7.4 in serum), less buffering capacity, and higher fat content.

Drug parameters affecting the extent of transfer into milk:

1. pKa:

- It determines drug ionization at a given pH.
- Highly ionized drugs tend <u>NOT</u> to concentrate in milk.
- For basic drugs (erythromycin), a greater fraction will be ionized at an acidic pH, so that the milk compartment tends to trap weak bases.

- Acidic drugs (penicillin) are more ionized at higher pH values and will be trapped in the plasma compartment.
- Drugs with higher pKa values generally have higher milk/plasma ratios.

2. Protein binding:

 Drugs that are highly bound to plasma proteins (warfarin) are likely to be retained in the plasma, because there is lower protein content in milk (~1%).

 Milk concentration of highly plasma proteinbound drugs is usually low.

3. Lipophilicity:

- Water-soluble drugs will NOT effectively cross the alveolar epithelium of the breast.
- CNS-active drugs usually cross to breast milk.

4. Molecular weight:

 Drugs with low molecular weight (<200) readily pass into the milk through small pores in the cell wall of alveolar cells.

- Drugs with higher molecular weights cross cell membranes by dissolving in the lipid layer.
- Protein molecules (very large molecular weights
 - > 6000 daltons) are virtually excluded from milk.

- Therefore, drugs that <u>pass minimally</u> to breast milk would be:
- 1) an acidic drug.
- 2) a drug with high plasma protein binding.
- a drug with low-to-moderate lipophilicity.
 (most NSAIDs)

- Therefore, drugs that <u>pass significantly</u> to breast milk would be:
- 1) A basic drug
- 2) A drug with low plasma protein binding
- 3) A dug with relatively high lipophilicity (sotalol).

- In the first few days of life, large gaps exist between alveolar cells that permit enhanced passage of drugs into milk.
- By the end of the first week, the gaps close under the influence of prolactin.
- Colustrum is secreted in the first 2 days after birth and has high amounts of immunoglobulins, maternal lymphocytes, and maternal macrophages.

- Greater amounts of drugs are present in colustrum but the amounts received by infants are low because of the <u>low volume of colustrum</u> produced.
- Some drugs are <u>pumped actively</u> into breast milk, such as iodides, which pass into milk with high concentration.

Assessing the Risk to the Infant

Many factors should be considered:

1. Inherent toxicity of the drug: Antineoplastic drugs, radionuclides, and iodine-containing compounds would be of concern.

Agents Contraindicated During Lactation Because they are Hazardous to Infants

- Atiarrhythmic drugs
- Anticholinergic drugs
- Antiinfective drugs
- CNS stimulants
- Cytotoxic agents
- Illicit substances
- Immunosuppressants
- Thalidomide

- Lithium
- MAOIs
- Radioactive substances
- Skeletal muscle relaxants
- Tetracyclines
- Tricyclic antidepressants
- Retinoic acid derivatives

Assessing the Risk to the Infant

- 2. Multiple maternal therapy with drugs having similar adverse effects (anticonvulsants, and psychotropic drugs) will increase the risk for the infant.
- 3. Active metabolites (benzodiazepines) may prolong infant drug exposure and lead to drug accumulation.
- 4. Drugs with long half-lives (fluoxetine) may be problematic.

Assessing the Risk to the Infant

- 5. Gestational age: premature infants are more susceptible because of low clearance.
- Maternal drug regimen: single doses or short courses have lower risk than chronic therapy or multiple medications.

Strategies to reduce the risk of drugs in breast fed infants:

- 1. Select medication considered safe for use in infants.
- 2. Give the maternal dose immediately after the infant has been fed, to avoid feeding at peak concentration of the drug in milk (if possible depending on frequency of feeding).

- 3. If the mother is receiving a single dose of a hazardous material (radiopharmaceuticals), avoid breast feeding and resume after a reasonable washout period (5 half-lives). If the half-life is long, the washout period will be very long.
- 4. If the mother is using a once-daily medication, administration before the infant's longest sleep period may be advised to increase the interval to next feeding.

- 5. Breastfeeding mothers should avoid selfmedication.
- 6. When drug use is indicated, the lowest <u>effective</u> dose should be used for the <u>shortest possible</u> period of time.
- 7. Simplify maternal regimen as much as possible.
- 8. New drugs are best avoided if a therapeutic equivalent is available for which data on safe use during lactation is available.

- 9. Infants exposed to drugs through breast milk should be monitored for adverse effects.
- 10. Select drugs with short half-lives and high protein binding to reduce accumulation.
- 11. For drugs taken multiple times per day, administration immediately after breast feeding provides the longest interval of back diffusion of the drug from breast milk into mother's serum (?!).

- 12. During short-term drug therapy, and if the medication is NOT compatible with breastfeeding, the mother can pump milk out and discard it to preserve here milk-producing capability.
- Information regarding drug use during breastfeeding can be obtained from www.toxnet.nlm.nih.gov

Neonates and premature Infants:

- 1. They are at greater risk of developing adverse effects to drugs after exposure via breast milk.
- 2. Gastric emptying time is prolonged and may alter drug absorption.
- 3. Protein binding is decreased.
- 4. Total body water is higher.
- 5. Renal function is limited.
- 6. Conjugation capacity is deficient (oxazepam).

Glucose-6-phosphate dehydrogenase deficiency:

- 1. It makes erythrocytes more susceptible to oxidative stress which results in hemolysis.
- 2. Only small amounts of the drug in breast milk are needed to produce hemolysis.
- Breastfeeding should be avoided and alternative drugs should be used if the infant is G6PD deficient.

Recreational Drug Use:

- 1. Substances such as cannabis, LSD, and cocaine should be avoided during breastfeeding.
- 2. Chronic or heavy consumers of alcohol should NOT breastfeed.
- High intake of alcohol in breastfeeding mothers:
- a) decrease milk let down reflex.
- b) disrupt nursing.
- causes infant sedation, fluid retention, and hormone imbalances in infants.

- 3. Nicotine decreases basal prolactin production. Mothers should be encouraged NOT to smoke whilst breastfeeding.
- 4. Caffeine appears in breast milk rapidly after maternal intake. ~ 10 or more cups of coffee per day by the mother produce fussiness, jitteriness, and poor sleep patterns in breast fed infants.
- Preterm and newborn infants metabolize caffeine slowly and are at increased risk.

Drug Effects on Lactation

- 1. Drugs that affect dopamine activity are the main cause of effects on milk production.
 - A. Dopamine agonists (cabergoline) decrease milk production.
 - B. Dopamine antagonists (domperidone) increase milk production.
- 2. Early postpartum use of estrogens may reduce the volume of milk.
- Milk production can be abolished by the use of estrogens or oral contraceptives.

Drug Effects on Lactation

 Breast milk production can be increased by metoclopramide (10 mg po, 3 times daily for 7-14 days) if nonpharmacological means are ineffective. It stimulates prolactin secretion.

Drugs Contraindicated during Lactation

Drug Class	Agents	Comments
Antiestrogens	Danazol GNRH agonists (e.g., leuprolide)	Ovarian suppression through pituitary-ovarian axis, inhibiting hormone production
	Anastrazole	Estrogen suppression through aromatase inhibition
Antiviral	Amantadine	Can suppress lactation by increasing dopamine
Dopamine agonists	Ropinirole Selegiline Rotigotine Dopamine	Lower serum prolactin concentrations, preventing lactation
Decongestants	Pseudoephedrine Propylhexedrine Phenylephrine	Oral intake can suppress milk production with singl doses; topical application has a significantly lower risk unless overused
Ergots	Ergotamine Dihydroergotamine	Inhibit prolactin, preventing lactation
Ergot derivatives	Bromocriptine Cabergoline	Likely safe if treating hyperprolactinemia; otherwise contraindicated
Ethanol	Alcohol	Chronic ingestion will suppress milk production
Nicotine	Cigarettes	Decreased prolactin concentrations, reduced antioxidant properties of breast milk
Selective estrogen receptor antagonists	Tamoxifen Raloxifene	Inhibit estrogen effects in breast tissue

Drug Effects on Lactation

Table 2. Botanical galactagogues

Oral botanical galactagogue	How it might work	Harms	Reference(s)
Fenugreek (Trigonella foenum- graecum)	tents	light headedness, maple smell in the urine and sweat, mild aller- gic reaction. Possible peanut al-	Bruckner 1993, Capasso 2009, Humphrey 2007, Low Dog
Blessed thistle (Cnicus benedic- tus)	Stimulates the flow of blood to the mammary glands	Increased risk of bleeding	Abascal 2008, Bingel 1994, Zapantis 2012

Torbangun leaves (Coleus am- boinicus Lour)	May stimulate proliferation of secretory mammary cells	Hypoglycaemia and stimula- tion of the thyroid gland	Bingel 1994, Zapantis 2012, Mortel 2013
Goat's rue (Galega officinalis)		No data for humans. Minor ab- normalities in blood and patho- logical specimens in rats	Abascal 2008, Bruckner 1993, Humphrey 2007, MacIntosh 2004, Rasekh 2008, Romm 2010
Fennel (Foeniculum vulgare)	Contains anethole, considered weakly estrogenic; may increase breast milk production or assist with the 'let-down' reflex. Re- putedly stimulates mammary growth	Essential oil, may be toxic in large amounts	Abascal 2008, Bingel 1994, Bruckner 1993, Humphrey 2007, Low Dog 2009, Mills 2006, Mortel 2013, Romm 2010
Shatavari (Asparagus racemosus)	duction by increasing prolactin.	Runny nose, itchy conjunc- tivitis, contact dermatitis and cough. May have laxative effect	

Drug Effects on Lactation

Anise or Aniseed (Pimpinella anisum)	Contains anethole, considered weakly estrogenic; the aromatic compound in anise may act as a dopamine receptor antagonist	Possible allergen for some peo- ple	Abascal 2008, Bingel 1994, Bruckner 1993, Humphrey 2007, Low Dog 2009, Romm 2010
Milk thistle (Silybum mari- anum)	Appears to stimulate prolactin; possibly estrogenic	None known	Abascal 2008, Bingel 1994, Capasso 2009, Low Dog 2009, Mills 2006, Mortel 2013
Barley (Hordeum vulgare)	Polysaccharide stimulates pro- lactin	None known. Commonly consumed grain, also used to make beer	
Malunggay or Drumstick (Moringa oleifera)	Increases prolactin	None known. Commonly consumed as a vegetable in the Phillipines and elsewhere	Bingel 1994